Brianchon-tétel

tétel a projektív síkgeometriában
Ez a közzétett változat, ellenőrizve: 2022. december 2.

A Brianchon-tétel klasszikus tétel a projektív síkgeometriában. Charles Julien Brianchon (1783–1864), francia matematikus után nevezték el.

A Brianchon-tétel ábrázolása

A tétel azt mondja ki, hogy:

Egy kúpszelet köré írt ABCDEF hatszögben (ahol az oldalak a kúpszelet érintői) az (AD,BE,CF) átlók egy pontban metszik egymást. Ez a Brianchon-pont.

Duálisa a Pascal-tétel.

A Brianchon-tétel és a Pascal-tétel alkalmazásaként lehetséges kúpszelethez pontokat és érintőket csak vonalzóval szerkeszteni.[1]

A tétel a Pascal-tétel bizonyításának dualizálásával bizonyítható.[2]

  • H. S. M. Coxeter: Projektív geometria