Einstein-féle összegkonvenció

Az Einstein-féle összegkonvenció, más néven Einstein-féle automatikus összegkonvenció avagy Einstein-féle néma index konvenció egy indexes jelölés az összegekre a Ricci-kalkulusban. Azt jelenti, hogy az azonos indexű tagok összeadandók, és nem tünteti fel a szumma jelet. A Ricci-kalkulust a differenciálgeometriában, a tenzoranalízisben és az elméleti fizikában használják. A konvenciót Albert Einstein 1916-ban javasolta.

MotivációSzerkesztés

A mátrix- és tenzorszámításokban gyakran képződnek indexes összegek. Például két  -es mátrix, A és B szorzata:

 

Itt a k indexre összegzünk 1-től n-ig. A többszörös mátrix- és skalárszorzatok hamar átláthatatlanná válnak. A fenti szorzat az Einstein-féle összegkonvencióval:

 

FormálisanSzerkesztés

Az összegkonvenció legegyszerűbb változata így hangzik: ha egy szorzatban egy index kétszer is felbukkan, akkor összegzünk rá. A relativitáselméletben csak akkor összegeznek, ha a kovariáns és a kontravariáns index egyezik meg. Ezt a kétféle indexet úgy különböztetik meg egymástól, hogy a kovariáns indexet alulra, a kontravariáns indexet pedig felülre teszik.

Az összegzési konvencióval az írásmód rövidebb, és segít felismerni olyan szimmetriákat és összefüggéseket, amelyek a hagyományos írásmódban felismerés nélkül maradnának.

PéldákSzerkesztés

Különbségtétel nélkülSzerkesztés

A következő példában    -es mátrix, értékeik   és   hozzájuk illeszkedő vektorok.

  • Skaláris szorzat:  .
  • Mátrix-vektor szorzat:  
  • Több mátrix szorzata (itt négy):  .
  • Az A mátrix nyoma:  

Kovariáns és kontravariáns indexek szerintSzerkesztés

  • Az   és   komponensű tenzorok   komponensű szorzata  
  • Az   komponensű tenzor alkalmazása az   összegére a   vektort adja:  .
  • A t tenzormező egy   környezetben ábrázolható, mint:
 
ahol az   objektum indexe alsó indexnek tekintendő.

ForrásSzerkesztés