Forgattyús mechanizmus
A forgattyús mechanizmus folyamatos körmozgást folyamatos egyenesvonalú lengőmozgássá illetve egyenesvonalú lengőmozgást körmozgássá átalakító mechanizmus. A forgattyús mechanizmust a műszaki gyakorlatban igen sok helyen használják. Erőgépek és munkagépek esetén forgattyús hajtóműnek is nevezik, mivel a mechanizmusnak ezekben az esetekben nemcsak kinematikai szerepe van (tehát hogy a mozgást a megfelelő módon átalakítsa), hanem energiaátadást is végez.
A forgattyús mechanizmus négy tagból álló síkbeli karos kinematikai lánc, melyből az egyik tag a merevnek tekintett talaj.
Léteznek más mechanizmusok is, amelyek ugyanezt a feladatot képesek ellátni, ilyen a kulisszás mechanizmus (kulisszás hajtómű), de az a mechanizmus is ide tartozik, amellyel James Watt a forgattyús hajtómű szabadalmát akarta kikerülni gőzgépeinél. Bütykös mechanizmussal folyamatos forgómozgást lehet alternáló egyenesvonalú mozgássá alakítani, de ez a működés nem megfordítható. Villamos gépekkel is teljesíthető ez a feladat, de a megoldás nem mechanizmus.
A forgattyús mechanizmus működése
szerkesztésA forgattyús mechanizmus fő részei:
- Forgattyú. Egy tengelyre szerelt vagy vele egy darabból készített kar. A kar és a tengely együttes neve forgattyústengely. A kar végén a tengellyel párhuzamos tengelyű hengeres csap van, ehhez csatlakozik egy csuklón (csapágyon) keresztül a hajtórúd, melynek másik vége szintén csukló (csapágy).
- A hajtórúd egyenes rúd, mindkét végén csapágyazva, egyik csapágya a forgattyú csapjához, a másik a keresztfej csapjához illeszkedik.
- Keresztfej egyenes vezetékben csúszó gépelem (kinematikai fogalommal csúszka), melynek csapjára a hajtórúd másik csapágya csatlakozik. A keresztfej egyenesvonalú lengőmozgást végez. A keresztfejhez csatlakoztatják a gép azon részeit, melyek munkagépeknél munkavégzésre, illetve erőgépeknél energiaforrásként szolgálnak. A mai műszaki gyakorlatban a legtöbb esetben a keresztfejet a gép egy másik alkatrészével egyesítik, így dugattyús motoroknál és szivattyúknál a dugattyú egyben a keresztfej szerepét is betölti. Régi gőzgépeknél és néhány más esetben a keresztfej és a dugattyú két külön darab volt, a keresztfej szerepe az egyenesbevezetés volt, az átmérőjéhez képest sokkal kisebb vastagságú dugattyú pedig a gép hengerének hasznos térfogatát csökkentette-növelte.
- A negyedik tag a talaj, vagyis a szilárdnak tekintett alap vagy gépkeret, melyhez rögzített a forgattyústengely csapágya illetve a keresztfej illetve a dugattyú vezetéke.
A forgattyús mechanizmus kinematikája
szerkesztésNéhány forgattyús mechanizmus kinematikai vázlata látható az első ábrán.
- 1. Szimmetrikus forgattyús mechanizmus keresztfejjel
- 2. Szimmetrikus forgattyús mechanizmus dugattyúval
- 3. Aszimmetrikus forgattyús mechanizmus (a dugattyú vezetéke nem illeszkedik a forgattyústengely középpontjára)
- 4. V-motor forgattyús mechanizmusa főhajtórúddal és mellékhajtórúddal.
Az alábbiakban a szimmetrikus mechanizmussal fogunk foglalkozni.
A keresztfejet mind a munkagépeknél mind az erőgépeknél erősen változó erőhatások terhelik, ezért a forgattyús mechanizmust legtöbbször lendkerékkel egészítik ki, hogy a forgattyús tengely fordulatszámának ingadozásait a megengedhető mértékre csökkentsék. Ha feltesszük, hogy a forgattyús tengely szögsebessége ideális esetben állandó, meghatározható a keresztfej vagy dugattyú elmozdulása, sebessége és gyorsulása a forgattyú szögelfordulása függvényében. A forgattyús tengely kezdeti időpillanattól számított szögelfordulása:
- ,
Ennél a helyzetnél a hajtórúd függőleges vetülete megegyezik a forgattyú függőleges vetületével:
A felső holtpont és a forgattyústengely távolsága:
Kifejezve a keresztfej (dugattyú) elmozdulását a felső holtponttól:
Bevezetve a hajtórúd arányt:
Ebből kifejezhető a két szög közötti összefüggés:
- ,
A hajtórúd arány szokásos értéke:
- ,
A szinusz- és koszinuszfüggvények összefüggése szerint:
- ,
A fenti összefüggések segítségével felírható a keresztfej elmozdulása, sebessége és gyorsulása az idő illetve a forgattyúskar szögének függvényében:
- ,
- ,
- ,
Közelítő összefüggések
szerkesztésA fenti összefüggéseket Taylor-sorba fejtve és csak az elsőrendű tagokat meghagyva jó közelítéssel az alábbiak írhatók:
- ,
- ,
- .
A határesetben a fenti összefüggések így alakulnak:
- ,
- ,
- .
Ez a feltétel természetesen nem valósítható meg forgattyús hajtóművel, mivel végtelen hosszú hajtórudat feltételez, azonban hosszabb hajtórúddal közelíthető. Kulisszás hajtóművel azonban pontosan is megvalósítható. A diagramokban vastag vonal a forgattyús hajtómű, vékony pedig a kulisszás hajtómű jellemzőit ábrázolja.
Forgattyús hajtómű
szerkesztésForgattyús hajtóműnek nevezik az olyan forgattyús mechanizmust, amely nemcsak a mozgást származtatja át alternáló egyenesvonalúból körmozgássá vagy fordítva, hanem jelentős mechanikai teljesítményt is átvisz. Ilyen forgattyús hajtóműveket használnak a gőzgépek, dugattyús motorok, ahol a hajtó oldal a keresztfej vagy dugattyú, illetve a dugattyús szivattyúk, kompresszorok, fűrészek, ahol a hajtó oldal a forgattyús tengely.
Kiegyensúlyozás
szerkesztésA hajtóművet működés közben különböző erők terhelik: A dugattyúra ható gáznyomás, a mechanizmus egyes elemeire ható tömegerők és a súrlódás. Mivel ezek az erők periodikusan hatnak, ha nem gondoskodik a tervező kiegyensúlyozásukról, akkor a gép rezgéseivel, nyugtalan járásával kell fizetni értük. Dugattyús motoroknál például a kiegyensúlyozás céljából több, megfelelő elrendezésű és gyújtási sorrendű henger alkalmazásával lehet megoldani, bár teljesen kiegyensúlyozott járást csak részlegesen lehet elérni. A tömegerők egyrészt a forgattyú centrifugális erőkből, és a dugattyú alternáló mozgásából származó gyorsulásból tevődnek össze. A hajtórúd egyik csapágya a dugattyúval együtt egyenesvonalú mozgást, a másik csapágya a forgattyú csapjával együtt forgó mozgást végez. Ilyen módon a centrifugális erőhöz és a lineáris gyorsító erőkhöz is a hajtórúd egy-egy része hozzájárul és azt a számításoknál a tervezők figyelembe is veszik.
A különböző soros, V W, H boxer, csillagmotorok tömegerőinek kiegyensúlyozására sokféle megoldás született, általában elmondható, hogy minél nagyobb hengerszámot valósítanak meg, annál jobban sikerül a forgattyús hajtómű okozta lengésgerjesztést csökkenteni.
Forgattyús tengely
szerkesztésAz egyhengeres motorok, szivattyúk forgattyús tengelyén sokszor végforgattyú van, ennél a megoldásnál a tengely két csapágyán túlnyúló, konzolos részén van a forgattyú, amely vagy egy darabból készül a tengellyel vagy külön alkatrészként szerelik rá. Ennek a megoldásnak egyszerűségén kívül az az előnye, hogy a hajtórudat egy darabból lehet készíteni és tengelyirányban szerelni a forgattyú csapjára.
A forgattyús tengelyt legtöbbször egyetlen darabból süllyesztékben kovácsolják. Ez szilárdsági szempontból a legkedvezőbb geometriai kialakítást teszi lehetővé, de az általában ötvözött acélból készült tengely kristályszerkezete is a legkedvezőbb. A nyers tengelyt általában csak a tengelycsapokon és a forgattyúcsapokon és a tengelyvégeken munkálják meg, a többi rész nyersen marad. Ritkán készítenek több darabból összerakott forgattyús tengelyt is.
Hajtórúd
szerkesztésAz egy darabból kovácsolt forgattyústengelyekre a hajtórudak csapágyait csak úgy lehet szerelni, ha a csapágyak és maga a hajtórúd feje is osztott. A tömegerők csökkentésére könnyített konstrukciókat használnak. Mivel a hajtórúd szilárdságilag főleg hajlításra van igénybevéve, ezért általában I-keresztmetszetű szárakat készítenek. A dugattyú oldali csapágynál szerelési probléma nem lép fel, ezért ott osztásra sincs szükség. A régi, lassújárású gőzgépeknél a tömegerők kisebb terhelést jelentettek, ezért ezeknél olyan konstrukciókat alkalmaztak, amelyek a korabeli technológiáknak megfelelő egyszerűbb gyártást tettek lehetővé.
Esetenként a forgattyú sugara olyan kicsi, hogy nem célszerű a szokásos módon kialakítani a hajtórúd fejét és csapágyát. Ilyenkor excentert (körhagyót) készítenek, vagyis olyan csapot és hozzá tartozó hajtórúd-csapágyat, amelynek sugara nagyobb, mint a forgattyúskar sugara. Ebben az esetben a hajtórudat nem kell osztani, mert méreteinél fogva felfűzhető tengelyirányban az excenterre.
Keresztfej
szerkesztésA lassú járású, rövid dugattyúval készült gépeknél keresztfejet használtak a dugattyú egyenesbe vezetésére és a csúszka megfelelő kenésének biztosítására. A keresztfejek két fő típusa terjedt el, az egyiknél a keresztfej vezetéke sík felület volt, a másiknál a vezeték is és a keresztfej csúszófelülete is hengeres volt. Ez utóbbinak előnye az esztergálással való megmunkálás volt, nem igényelt különleges szerszámgépeket és az egyes alkatrészek központosítása is egyszerűbb volt.
Dugattyú
szerkesztésA gőzgépek dugattyúja az átmérőjéhez képest sokkal kisebb magasságú henger volt, ami az egyenesbevezetést nem tudta biztosítani keresztfej nélkül. A dugattyús motoroknál a dugattyúkat sokkal hosszabbra készítik, és ezzel a dugattyú átveszi a keresztfej szerepét is. Itt problémát jelent a dugattyú kenése, mivel az a forró hengerben végzi alternáló mozgását. Négyütemű motorok dugattyúinak kenését a motorház alsó részét képező karterben lévő olajjal oldják meg, amit a dugattyúhoz vagy a forgattyústengely hordja fel, vagy külön szivattyúval juttatják el. Gondoskodni kell a felesleges olaj eltávolításához is, amikor a dugattyú lefelé halad, nehogy az égéstérbe jutva elégjen. Ezt speciális olajlehúzó gyűrűkkel oldják meg. Kétütemű motoroknál ez a megoldás nem lehetséges, ezért a kenést a tüzelőanyagba (benzin) kevert kismennyiségű olajjal oldják meg, ami természetesen el is ég a hengerben.
Lendkerék
szerkesztésA forgattyús hajtómű közelítőleg állandó fordulatszámát a forgattyús tengelyre épített lendkerékkel biztosítják.
Története
szerkesztésA kézimalom excentrikusan elhelyezett fogantyúja, mely i. e. 5. században tűnt fel a keltibér Spanyolország területén, majd elterjedt az egész Római Birodalomban, tulajdonképpen az emberi karral forgattyús mechanizmust alkotott.[2][3] Egy római vas forgattyút a svájci Augusta Rauricában ástak ki. A 82,5 cm hosszú eszköz rendeltetése ismeretlen, és mintegy i.sz. 250-re datálható.[4]
A forgattyús mechanizmus gépben való alkalmazására a legkorábbi bizonyítékot a késő római hiaropolisi fűrészmalom szolgáltatta a 3. századból valamint két kő fűrészelésére szolgáló malom Epheszoszban és Gerasában, (mindkettő a 6. századból).[1]
Egy 9. század elején írt karoling kézirat, az Utrechti Psalterium egy köszörűkorong forgatására szolgáló forgattyút (fogantyút) ábrázol.[5] A forgattyú megjelenik a perzsa Banū Mūsā testvérek könyvében, a Jeles találmányok könyvében leírt néhány hidraulikus eszközben, melyet a 9. század közepén írtak.
Guido da Vigevano (1280–1349) olasz tudós egyik illusztrációja olyan hajót ábrázolt, melynek lapátkerekét kézi forgattyúval hajtották és egy harci járművet, melyet szintén kézi forgattyúval hajtott a személyzete fogaskerekes áttételen keresztül.[6] A forgattyús hajtómű használata a 15. században lett általános Európában.
Kínában a kézi forgattyú a Han-dinasztia alatt jelent meg (i.e. 220 körül), ahogy a Han-korszak sírjaiban talált modellek tanúsítják, és később a selyem-gombolyításnál és kenderfonásnál, valamint a gabona tisztításnál fújtató működtetésére, vízkerékkel hajtott liszt szitánál, valamint a fémkohászatban fújtató hajtására, és kerekes kutaknál alkalmazták.[7]
Al-Jazari (1136–1206) arab tudós leírt forgattyús hajtóművet két vízemelő berendezésénél is.[8][9]
A forgattyús mechanizmus a gőzgépek, majd dugattyús szivattyúk, fűrészgépek alkalmazásával terjedt el. Gőzgépnél a forgattyús mechanizmust először 1779-ben James Pickard alkalmazta egy Newcomen-gépen, ez volt az első gőzgép, amely forgó mozgást hozott létre.[10] A 19. század folyamán igen elterjedt volt a használata: Lábbal hajtott köszörűkön, rokkákon, esztergapadokon, varrógépeken, stb.
Képek
szerkesztés-
Római kézi forgattyú Augusta Raurica,Svájc.
-
Gőzgép az 1894-es Brockhaus-lexikonból. Jól látható a keresztfej.
-
Kettős működésű gőzgép animációja. A tolattyút excenter hajtja.
-
Öthengeres repülőgép-csillagmotor animációja
-
BMW 132 csillagmotor forgattyúja és hajtórudai
-
V-motorok vázlata
-
Soros motor forgattyús hajtóművének vázlata
-
Napier delta-motor animációja
-
Boxer-motor animációja
-
190 LE-s Renault 5Bd repülőgépmotor forgattyús hajtóműve.
-
Keresztfejes hajtómű vázlata
-
Excenter animációja
További információk
szerkesztésForrások
szerkesztés- Pattantyús Gépész- és Villamosmérnökök Kézikönyve 2. kötet. Műszaki Könyvkiadó, Budapest, 1961.
- Pattantyús Á. Géza: A gépek üzemtana. 14. lényegesen átdolgozott és bővített kiadás. Műszaki Könyvkiadó, Budapest, 1983. ISBN 963-10-4808-X
Jegyzetek
szerkesztés- ↑ a b Ritti, Grewe & Kessener 2007, p. 161
- ↑ Ritti, Grewe & Kessener 2007, p. 159
- ↑ Lucas 2005, p. 5, fn. 9
- ↑ Laur-Belart 1988, p. 51–52, 56, fig. 42
- ↑ Needham 1986, p. 112.
- ↑ Needham 1986, p. 113.
- ↑ Needham 1986, pp. 118–119.
- ↑ Ahmad Y Hassan. The Crank-Connecting Rod System in a Continuously Rotating Machine.
- ↑ Sally Ganchy, Sarah Gancher (2009), Islam and Science, Medicine, and Technology, The Rosen Publishing Group, p. 41, ISBN 1435850661
- ↑ http://www.history.rochester.edu/steam/thurston/1878/Chapter3.html Archiválva 2010. január 27-i dátummal a Wayback Machine-ben ROBERT H. THURSTON: A gőzgép fejlődése