Hidrogén-cianid
Hidrogén-cianid | |||
IUPAC-név | hidrogén-cianid | ||
Szabályos név | formonitril metánnitril | ||
Más nevek | cián-hidrogén, kéksav, poroszsav, burkussav | ||
Kémiai azonosítók | |||
---|---|---|---|
CAS-szám | 74-90-8 | ||
PubChem | 768 | ||
ChemSpider | 748 | ||
RTECS szám | MW6825000 | ||
| |||
| |||
InChIKey | LELOWRISYMNNSU-UHFFFAOYSA-N | ||
Kémiai és fizikai tulajdonságok | |||
Kémiai képlet | HCN | ||
Moláris tömeg | 27,03 g/mol | ||
Megjelenés | Színtelen gáz vagy kék színű, könnyen párolgó folyadék | ||
Sűrűség | 0,687 g/cm³, folyadék | ||
Olvadáspont | −13,4 °C (259,75 K, 7,88 °F) | ||
Forráspont | 26 °C (299,15 K, 78,8 °F) | ||
Oldhatóság (vízben) | Korlátlanul elegyedik | ||
Savasság (pKa) | 9,2-9,3 | ||
Kristályszerkezet | |||
Molekulaforma | Lineáris | ||
Dipólusmomentum | 2,98 D | ||
Veszélyek | |||
EU osztályozás | Fokozottan tűzveszélyes (F+), Nagyon mérgező (T+), Környezetre veszélyes (N)[1] | ||
NFPA 704 | |||
R mondatok | R12, R26, R52/53[1] | ||
S mondatok | (S1/2), S7/9, S16, S36/37, S38, S45, S60, S61[1] | ||
Lobbanáspont | −17,78 °C | ||
Rokon vegyületek | |||
Rokon vegyületek | Dicián Ciánklorid Metilidinfoszfán | ||
Ha másként nem jelöljük, az adatok az anyag standardállapotára (100 kPa) és 25 °C-os hőmérsékletre vonatkoznak. |
A hidrogén-cianid (régies nevén kéksav) közönséges körülmények között színtelen, könnyen párolgó folyadék. Szaga a keserűmanduláéra emlékeztet. Gőze nagyon mérgező. Szervetlen vegyület, összegképlete HCN. Vízzel, alkohollal és éterrel korlátlanul elegyedik. A molekulája erősen poláris. Folyékony halmazállapotban (HCN)2 dimerként van jelen,[2] a hidrogén-cianid molekulák között hidrogénkötések találhatók. Gyenge sav, vizes oldatban kis mértékben disszociál, disszociációjakor cianidionok (CN−) képződnek belőle. A hangyasav nitriljének is felfogható.
A cián név a görög kianosz (κυανός: sötétkék) szóból származik.[3]
Felfedezése, története
szerkesztésA hidrogén-cianidot először Carl Wilhelm Scheele állította elő, 1782-ben. Gay-Lussac tudta először vízmentes állapotban előállítani 1811-ben. Liebig és Wöhler jött rá, hogy kötött állapotban előfordul a keserűmandulában.
Szerkezete
szerkesztésA hidrogén-cianidnak két tautomeralakja létezik. Az egyik alak a szén hidrogén-nitridjének, a másik a szén amidjának (izo-alak) tekinthető. A két alak között egyensúly áll fenn. Közönséges körülmények között az izo-alak csak körülbelül 1%-ban fordul elő.
A normál alakban a szén és a nitrogénatom között háromszoros kötés található, ez a háromszoros kötés azonban delokalizálódik. Átterjed a szén-hidrogén kötésre, emiatt ez a kötéshossz rövidebb (106,5 pm), mint a metánban a szén-hidrogén kötéstávolság (109,3 pm).
Kémiai tulajdonságai
szerkesztésA hidrogén-cianid meggyújtható, égésekor szén-dioxid, víz, és nitrogén keletkezik. Oxigénnel robbanó elegyet alkot.
Gyenge sav. Alkálifémek hidroxidjaival sókat, cianidokat képez. Az alkáli-cianidok könnyen hidrolizálnak.
Még a szénsavnál is gyengébb sav, ezért a cianidok a levegőben található vízpárából és szén-dioxidból keletkező szénsav hatására is bomlanak. A bomlás során hidrogén-cianid gáz fejlődik, ezért a cianidok keserűmandula szagúak.
Vizes oldatban lassan hidrolizál. A hidrolízisekor ammónium-formiát keletkezik.
Cseppfolyós halmazállapotban könnyen polimerizálódik.
Előállítása
szerkesztésHidrogén-cianid keletkezik kálium- vagy nátrium-cianid savval való elbontásakor.
Iparilag metánból és ammóniából állítják elő magas hőmérsékleten (1000 K fölött), katalitikus oxidációval.
Képződik ammónium-formiátból foszfor-pentoxiddal való vízelvonással is. (A hidrogén-cianid hidrolízise megfordítható folyamat.) Kálium-[hexaciano-ferrát(II)]-ből (vagy más néven kálium-ferrocianidból) hidrogén-cianid keletkezik, ha közepes töménységű (körülbelül 30%-os) kénsavoldattal reagál.
Szerepe a légköri folyamatokban
szerkesztésBiomassza-égés (erdő-, és bozóttüzek) melléktermékeként, a nitrogéntartalmú komponensek pirolízisével keletkezik. Az acetonitril mellett a légkör egyik legfontosabb természetes eredetű szerves nitrogén tartalmú formájaként azonosították. Annak ellenére, hogy a különböző erdőtüzek esetén, az ily módon kibocsátott HCN mennyisége erősen változó a hidrogén-cianid emisszióját használják a városi és természetes eredetű légszennyezések megkülönbözésére és természetes biomassza égési folyamatok mennyiségi becslésére.[4] A hidrogén-cianid biomasszából származó emissziója 0,6-3,2 Tg (N)/évre becsülhető.[5] Légköri HCN ezenkívül még képződhet villámlások hatásra is.[6]
Légköri hidrogén-cianid ellenáll a közvetlen fotolízisnek és csak kis mennyisége alakul át kémiai úton, mivel az egyik legreaktívabb fotokémiai úton képződő légköri oxidálószerével, a hidroxilgyökkel (OH) szemben is nagy inertséget mutat. Ennek következtében a becsült felezési ideje a légkörben hosszú (334 nap). Mivel a HCN nagyon jól oldódik vízben, a légköri kiürülésének legvalószínűbb mechanizmusa a nedves kimosódás, a légkörből kimosódott HCN feltételezhetően biológiai úton bomlik le. A HCN nedves ülepedésének első lépése a vízpára cseppek vagy felhők jégkristályain bekövetkező adszorpciója.[7]
Szerepe a kémiai evolúcióban
szerkesztésA fent említett villámlások nemcsak a modern légkörben, hanem az ősi atmoszférában is lejátszódhattak. Ennek feltételezésével végezte el Miller és Urey azokat az úttörő kísérleteket, amelyekkel metán, ammónia és víz felhasználásával elektromos kisülések hatására aminosavakat állított elő.[8] Elterjedt feltételezés, hogy ezen aminosavak polikondenzációján keresztül képződhettek az első proteinek, azonban az aminosavak csak másodlagos termékei azon polipeptideknek, amelyek a HCN polimerizációjával képződtek.[9]
Jegyzetek
szerkesztés- ↑ a b c A hidrogén-cianid (ESIS)[halott link]
- ↑ Römpp vegyészeti lexikon. Budapest: Műszaki Könyvkiadó, 452. o. (1982). ISBN 963 10 3813 0
- ↑ Fülöp József: Rövid kémiai értelmező és etimológiai szótár. Celldömölk: Pauz–Westermann Könyvkiadó Kft. 1998. 32. o. ISBN 963 8334 96 7
- ↑ Akagi, S.K., et al., Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011. 11(9): p. 4039-4072.
- ↑ Lobert, J. M.; Scharffe, D. H.; Hao, W. M.; Kuhlbusch, T. A.; Seuwen, R.; Warneck, R.; Crutzen, P. J. Experimental Evaluation of Biomass Burning: Nitrogen and Carbon Containing Compounds. In Global Biomass Burning; Levine, J. S., Ed.; MIT Press: , 1991, pp. 289−304.
- ↑ Singh, H.B., et al., Reactive nitrogen distribution and partitioning in the North American troposphere and lowermost stratosphere. Journal of Geophysical Research-Atmospheres, 2007. 112(D12).
- ↑ Szőri, M. and P. Jedlovszky, Adsorption of HCN at the Surface of Ice: A Grand Canonical Monte Carlo Simulation Study. Journal of Physical Chemistry C, 2014. 118(7): p. 3599-3609.
- ↑ Miller, S. L., A production of amino acids under possible primitive earth conditions.Science, 1953, 117(3046): 528-529
- ↑ Matthews, C., The HCN World: Establishing Protein Nucleic Acid Life via Hydrogen Cyanide Polymers. In Origins: Genesis, Evolution and Diversity of Life, Kluwer Academic Publishers: 2004; pp 121-135.
Források
szerkesztés- Nyilasi János: Szervetlen kémia
- Bodor Endre: Szervetlen kémia
- Bruckner Győző: Szerves kémia