Racionális számok

Két tetszőleges egész szám hányadosaként kihozható számok
Ez a közzétett változat, ellenőrizve: 2022. november 16.

A matematikában racionális számnak (hányados- vagy vegyes-törtszámnak) nevezzük két tetszőleges egész szám hányadosát, amelyet többnyire az a/b alakban írunk fel, ahol b nem nulla.

Egy racionális számot végtelen sok alakban felírhatunk, például . A legegyszerűbb, azaz tovább nem egyszerűsíthető alak akkor áll elő, amikor a és b relatív prím. Minden racionális számnak pontosan egy olyan tovább nem egyszerűsíthető alakja van, ahol a nevező pozitív (irreducibilis tört).

A racionális számok tizedestört alakja véges vagy végtelen szakaszos (tehát a felírásban egy ponton túl a számsorozat periodikusan ismétlődik). Ez az állítás nem csak a tízes-, hanem tetszőleges, egynél nagyobb, egész alapú számrendszerben való felírásra igaz. A tétel fordítottja is igaz: ha egy szám felírható véges vagy végtelen szakaszos tizedestört alakban, akkor az racionális szám.

Azokat a valós számokat, amelyek nem racionálisak, irracionális számoknak nevezzük.

A racionális számok halmazát tipográfiailag kiemelt Q (vagy ) betűvel jelöljük (a latin quotiens (hányszor?), illetve az angol quotient (hányados) szóból). Halmazdefinícióként felírva:

Törtek, törtszámok és racionális számok

szerkesztés

A racionális szám a hétköznapi szóhasználatban, illetve az elemi matematika területén használt tört v. törtszám fogalmának egy precízebb változata. Egy számot racionálisnak nevezünk, ha felírható a/b tört alakban, ahol a és b is egész számok. A gyakorlatban a "racionális szám" kifejezés általában helyettesíthető a "tört(szám)" fogalmával. Elméletben, köszönhetően a matematika általánosságra és precízségre törekvésének, ugyanakkor a két fogalom nem ugyanaz.

Egyrészt a "tört" jóval általánosabb fogalom, a számok felírásának formáját és nem feltétlenül az értéküket írja le. Törteket lehet pl. kifejezésekből vagy függvényekből (vagy akár irracionális számokból) is készíteni. Ezért "tört" helyett rögtön szükségessé válik a pontosabb "törtszám" kifejezés. A tankönyvek általában úgy definiálják ezeket, mint olyan a/b alakú törteket, ahol a,b egészek, és a nem osztható maradék nélkül b-vel (ezek tehát olyan racionális számok, melyek nem egészek).

További gond, hogy az egész számok is felírhatóak törtek alakjában, ráadásul végtelen sokféle módon (pl. 2= 2/1 = 4/2 = 6/3 = ... ), tehát algebrai, formális értelemben az egész számok is tekinthetőek "törteknek" v. "törtszámoknak" (habár nem tekintjük őket annak). Másrészt (és a például adott egyenlőségeket a másik oldaláról nézve), a törtek értéke is lehet egész szám. Tehát a "tört" fogalom nem eléggé precíz, többféleképp is félreérthető, amennyiben olyankor kell használni, amikor a cél a számok nem egész voltának kihangsúlyozása. Ezért szükséges a pontosabb „törtszám” kifejezés használata. Ez utóbbi előnye, hogy a hétköznapi szóhasználatban is meglévő és az egész számok kiterjesztésében logikusan fellépő kifejezés, a szigorúbb vizsgálat azonban megmutatja, hogy bár a félreértések egy részének kiküszöbölésére alkalmas, még mindig többféleképp félreérthető.

A matematika több ágában, így pl. a diofantikus approximációk elméletében, ugyanakkor sok esetben kényelmesebb az egészekről és a törtszámokról egy kifejezéssel beszélni, őket egy kategóriába sorolni (az egészek és a törtszámok között sokkal kisebb az elméleti törés, sokkal több a hasonlóság, mint a törtek és az irracionális számok között). Így szükség van egy olyan kifejezésre, ami alá az egészek és a törtszámok is tartoznak, viszont kifejezések, függvények stb. nem. Így jutunk (pontosabban ezért juthatunk) a "racionális szám" fogalmához.

Aritmetika

szerkesztés
 

 

 

 

Két racionális szám,   és   akkor és csak akkor egyenlők, ha  

A racionális számoknak létezik additív és a nullától különbözőknek multiplikatív inverze:

 

 

 

A tovább nem egyszerűsíthető alak:

 

ahol

 ,

  az   egész számok legnagyobb közös osztója, ami kiszámítható például euklideszi algoritmussal. Ha   egész szám, akkor tovább nem egyszerűsíthető tört alakja  

A racionális számok rendezése megadható úgy, mint:

 

ahol   az egész számok szokásos rendezése,   a szignumfüggvény és   az abszolútérték. A bővítés és az egyszerűsítés nincs hatással az összehasonlításra. Ez a rendezés az egész számok rendezésének kiterjesztése, ugyanis  .

Ha két pár ekvivalens, akkor sem       sem       nem teljesül. A rendezés egyik alaptulajdonsága a trikhotómia:

  •  
  •  
  •  

Ezzel   teljesen rendezett halmaz.

Ezen a rendezésen alapul a racionális számok definíciója Dedekind-szeletekkel.

Történetük

szerkesztés

Egyiptomi törtek

szerkesztés

Minden pozitív racionális szám felírható véges sok különböző pozitív egész reciprokának összegeként. Például:

 

Sőt, minden pozitív racionális számnak végtelen sok ilyen formájú, különböző felírása lehetséges. Ezt az alakot egyiptomi törtnek is nevezzük, mivel már az ókori Egyiptomban is használták, akik egyébként a diadikus törteket is a maitól eltérő alakban írták le.

Formális definíció

szerkesztés

A racionális számok precízen egész számok rendezett párjaként definiálhatók:   ahol b nem nulla. Az összeadást és szorzást ezeken a párokon a következőképp definiáljuk:

 
 

Annak érdekében, hogy teljesüljön az elvárt   tulajdonság, definiálni kell egy ekvivalenciarelációt is ( ) a következőképpen:

 

Ez az ekvivalenciareláció kompatibilis a fent definiált összeadással és szorzással. Legyen ezután Q az ekvivalenciaosztályok halmaza, más szóval azonosnak tekintjük az (a, b) és a (c, d) párt, ha ekvivalensek. (Ez a konstrukció elvégezhető minden integritástartomány esetében, lásd hányadostest.)

Az így kapott számok halmazán a teljes rendezés is definiálható:

 

A racionális számok halmaza tartalmaz az egész számokkal ekvivalens halmazt: a  egész számhoz   rendelhető. Ezt úgy szokták kifejezni, hogy az egész számok is racionálisak.

Tulajdonságok

szerkesztés

A racionális számok halmaza ( ) az összeadás és a szorzás műveletével testet alkot. Ez a test az egész számok ( ) hányadosteste. A legszűkebb test, ami tartalmazza a természetes számokat, mivel   a legszűkebb gyűrű, ami tartalmazza a természetes számokat.

A racionális számok halmaza a legszűkebb 0 karakterisztikájú test. Minden egyéb 0 karakterisztikájú test tartalmazza a racionális számok testének egy izomorf képét. A valós számok prímteste is, és mint prímtest, merev, azaz automorfizmuscsoportja egyelemű.

A racionális számok algebrai lezártja (azaz a racionális együtthatós polinomok gyökeit is tartalmazó legszűkebb test) az algebrai számok halmaza.

A racionális számok halmaza megszámlálhatóan végtelen, vagyis sorozatba rendezhető. Ez azt jelenti, hogy   és   egy-egyértelműen megfeleltethető egymásnak, azaz minden   racionális számhoz rendelhető egy   természetes szám, és megfordítva. Ilyen sorozatokat lehet alkotni Cantor első átlós érvével vagy a Stern-Brocot-fával. Mivel a valós számok számossága ennél nagyobb, így mondhatjuk, hogy a valós számok túlnyomó többsége irracionális.

A sűrűség ellenére nincs olyan valós-valós függvény, ami csak a racionális számokon folytonos. Ezzel szemben van olyan, ami az irracionális számokon folytonos, de a racionálisokon nem.

A racionális számok halmazának Lebesgue-mértéke nulla.

A racionális számok sűrűn rendezett halmazt alkotnak: bármely két különböző racionális szám között van egy harmadik, (és így végtelen sok). Jelölje a két adott számot   és  ! Ekkor a számtani közepük is racionális:

 .

A sűrűség azt is jelenti, hogy bármely racionális szám tetszőlegesen pontosan közelíthető racionális számokkal. A rendezett halmazok között pontosan a racionális számok halmaza (meg a vele izomorfak) azok, amelyek megszámlálhatóak, sűrűn rendezettek és nincs legkisebb vagy legnagyobb elemük (Georg Cantor tétele).

Egy valós szám racionális, ha algebrailag elsőfokú. Ezzel a racionális számok az algebrai számok   testének részhalmaza.

Osztó algoritmusok

szerkesztés

A racionális számok tört alakja egy el nem végzett osztás formájában ábrázolja a számot. A tiszta matematika számára általában elég is ez az ábrázolás, legfeljebb tovább nem egyszerűsíthető alakra hozásra van igény. Ha azonban több számmal kell összeadást, kivonást vagy összehasonlítást végezni, akkor érdemes a számokat közös nevezőre hozni. Ezekhez a műveletekhez lehet a számokat vegyes tört alakban ábrázolni, és csak a törtrészt közös nevezőre hozni. A vegyes tört alakra hozás a maradékos osztás elvégzésének felel meg.

Az osztást akkor tekintik elvégzettnek, ha egy helyi értékes számrendszerben meghatározták a szám (egy alakjának) összes számjegyét. Ehhez az osztást elég egy periódusig vinni, hiszen a racionális számok végtelen szakaszos tizedestörtek. Ehhez az algoritmusok három csoportját alkották meg:

  • Írásbeli algoritmusok
  • Számítógépes algoritmusok:
  • Rögzített hosszúságú számokra
  • Tetszőleges hosszúságú számokra.

Az utóbbira példák:

  • SRT-osztás
  • Goldschmidt-osztás
  • Newton-Raphson-osztás

Az utóbbi két algoritmus a nevező reciprokát veszi, amit megszoroz a számlálóval. Ezeket az eljárásokat rögzített hosszúságú számokra is használják. Például az SRT-osztást használták az Intel Pentium processzoraihoz, de hiba csúszott a megvalósításba.

Tizedestört alak

szerkesztés

A valós számoknak van tizedestört alakjuk. A racionális számok ezek közül a szakaszos tizedestörtek. Az irracionális számok tizedestört alakja nem periodikus.

A véges tizedestörtek pontosan azok, ahol a tovább nem egyszerűsíthető tört vagy áltört alak nevezője osztója az alap valamelyik hatványának. Ekvivalensen, a nevező prímtényezői az alap prímtényezői közül kerülnek ki. A véges tizedestörtek is szakaszos tizedestörtek; a véges rész az előszakasz, a periódus nulla számjegyből áll. A tizedestört alak nem mindig egyértelmű; a véges tizedestörtként írható racionális számoknak van egy másik tizedestört alakjuk is, ami megkapható a véges tizedestört alak utolsó számjegyét eggyel csökkentve, utána a szakaszt csupa kilencessel kitöltve. Lásd: 0,999…

Hasonlósak érvényesek más,   egész alapú számrendszerben, ahol a kilencesek szerepét az alapnál eggyel kisebb számjegy veszi át. A periódust vagy felülvonással, vagy két ponttal jelzik.

Példák:

       
       
       
       
       

Az Euler–Fermat-tétel szerint, ha a nevező  , és hozzá az alap   relatív prím, akkor

 

ahol   az Euler-féle phi-függvény. Az   szakaszának hossza megegyezik az   renddel, ahol   maradékosztály a   modulo   maradékosztálygyűrűjének   prím maradékosztályában. Lagrange tétele szerint   osztója a csoport   rendjének. Az

 

pozitív egész  , és     alapú bázisba fejtve kapott jegyei a  -adikus ábrázolásban ugyanezek a jegyek köszönnek vissza:

 

Például a fenti táblázatban az 1/3 periódushossza a tízes alapú bázisban  , és jegyeinek sorozata  . Kettes alapú számrendszerben a szakasz hossza  , és a jegyek sorozata  .

Egy adott   nevező esetén a szakasz hossza pontosan akkor  , ha   primitív gyök modulo  . Primitív gyök akkor van, ha az   prím maradékosztálycsoport ciklikus, azaz ha   Különben a periódus hossza   valódi osztója.

Az alábbi táblázat   és   esetét mutatva azt a benyomást kelti, hogy a maximális szakaszhossz gyakori. Például a   prímszámok reciprokainak szakaszhossza  . A   összetett számok esetén a maximális hossz  . A   hosszú periódusok ki vannak emelve. A legrosszabb eset  , míg átlagos esetben az   szám   hossza a   alapú számrendszerben  . A 802787 prímszám reciprokának periódushossza kettes számrendszerben 802786, tízes számrendszerben 401393. Ez túl sok ahhoz, hogy a táblázatban szerepeljen.

  3 5 7 9 11 12 13 15 17 19 21 23 25 27 29 31 33 35 37 802787
  2 4 6 6 10 4 12 8 16 18 12 22 20 18 28 30 20 24 36 802786
  2 4 3 6 10 12 4 8 18 6 11 20 18 28 5 10 12 36 802786
  2 3 3 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 20
  4 6 5 3 16 18 11 20 28 30 12 18 401393
  2 2 3 3 3 3 3 3 4 4 4 4 13
  2 6 6 5 2 4 16 9 6 22 18 14 3 10 36 802786
  1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 9
  1 6 1 2 6 16 18 6 22 3 28 15 2 3 401393
  1 1 1 2 2 2 2 2 2 2 2 2 2 2 6

Valós számok

szerkesztés

A racionális számok a valós számok halmazának sűrű részhalmazát alkotják, azaz minden valós számhoz tetszőlegesen közel vannak racionális számok. Ugyancsak igaz, hogy a racionális számok pontosan a véges lánctört formájában írható valós számok.

Mivel rendezett halmazt alkotnak, a racionális számokat elláthatjuk a rendezéstopológiával. Ez azonos a valós számok rendezéstopológiájának altértopológiájával, továbbá egyben metrikus tér is, a következő metrikával:  .

E topologikus tér a műveletekkel topologikus testet alkot. A racionális számok topológiája nem lokálisan kompakt. Ez a tér úgy is jellemezhető, hogy az egyetlen megszámlálható metrikus tér, amiben nincsenek izolált pontok. A tér továbbá teljesen széteső. A racionális számok tere nem teljes, teljes lezártja a valós számok tere.

p-adikus számok

szerkesztés

A fent említett, a szokásos abszolút értékből definiált metrikán kívül vannak más, nem kevésbé fontos metrikák is, amelyek  -t topologikus testté szervezik:

legyen   tetszőleges prímszám, definiáljuk minden nemnulla egész   esetén  -t, ahol     legnagyobb hatványának kitevője, ami osztja  -t; legyen továbbá  . Tetszőleges   racionális szám esetén legyen  .

Ekkor   metrikus teret definiál  -n. Ez a tér,   nem lesz teljes, teljes burka a p-adikus számok   teste lesz.

Fordítás

szerkesztés

Ez a szócikk részben vagy egészben a Rationale Zahl című német Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.