Reciprok
A matematikában egy nullától különböző szám reciprokának vagy multiplikatív inverzének azt a számot nevezik, amivel a számot szorozva az eredmény 1. A reciprok fogalma értelmezhető a racionális, a valós és a komplex számok körében egyaránt. A reciprok szó latin eredetű, és kölcsönösségre utal, és inkább ezekben a számkörökben használják. A számkörökön túl általában inkább inverznek szokták hívni.

Ha a számot x jelöli, akkor a reciproka 1/x, azaz 1 osztva x-szel, vagy másképp x−1, azaz x a mínusz egyedik hatványon. Egy szám reciprokának reciprokát véve visszakapjuk az eredeti számot. Tört formában felírt racionális szám esetében a számláló és a nevező felcserélésével egyszerűen megkapható a reciprok.
A reciprok, mint függvény az egyik legegyszerűbb példa egy olyan függvényre, melynek ismétlése az eredeti helyet adja vissza, így önmaga inverze. Az ilyen függvényeket involúciónak szokták nevezni.
A reciprok elnevezést az Elemek egy 1570-es fordítása használta, de inkább az Encyclopædia Britannica harmadik kiadása (1797) hozta divatba. Az Elemek inkább geometriai mennyiségekre vonatkoztatta.[1]
A fogalom kiterjeszthető más struktúrákra is, ahol a szorzás nem feltétlenül kommutatív, és nem feltétlenül asszociatív. Ekkor nem feltétlenül teljesül, hogy ab ≠ ba, így lehet beszélni jobb és bal inverzről. Az asszociativitás biztosítja a két inverz egyenlőségét.
Függvények esetén f −1 gyakran az inverz függvényre utal, és nem a függvény inverzére. Például a szinuszfüggvény inverz függvénye az árkusz szinusz, a függvény inverze a koszekáns. Csak lineáris leképezések esetén van szó ugyanarról a függvényről. A reciprok és az inverz szavak különbözősége sem segít megkülönböztetni a kettőt, mivel különböző szerzők és nyelvek máshogy használják.
Speciális számok
szerkesztésA nullának semmilyen számkörben sem értelmezhető véges reciproka, ugyanis bármely számot nullával szorozva az eredmény nulla lesz. Ezért nincs olyan szám, amit nullával szorozva egyet kapnánk. A nullaszor végtelen szorzás eredménye nem egyértelmű.
A reciprok fogalmához hasonló az additív inverz, az ellentett. A valós számok körében az ellentett és az inverz mindig különböző számok. A komplex számok halmazában azonban vannak olyan számok, amiknek megegyezik az ellentettjük, és a reciprokuk: ezek éppen a képzetes egységek, a ±i.
Néhány irracionális szám reciprokának fontos speciális tulajdonságai vannak. Ide tartozik az Euler-féle szám reciproka (≈ 0,367879) és az aranymetszés reciproka (≈ 0,618034). Az szám különlegessége, hogy az függvény globális minimuma. Az aranymetszés reciproka eggyel kisebb, mint az aranymetszés: , és az egyetlen ilyen pozitív szám. Hasonló teljesül az ellentettjére, csak ellenkező előjellel: .
Az függvény végtelen sok irracionális számot ad, melyek egész számmal térnek el reciprokuktól. Például esetén adóik, melynek reciproka , ami néggyel kevesebb. Ez azt is jelenti, hogy törtrészük megegyezik reciprokuk törtrészével.
Példák
szerkesztésA nullától különböző valós és komplex számoknak van reciproka. Racionális számok reciproka racionális, valósaké valós, komplexeké komplex. Általában, a testek olyan struktúrák, melyekben minden nullelemtől különböző elemnek van multiplikatív inverze. Belátható, hogy ez gyűrűk esetén a másik irányba is teljesül; azaz, ha a nullelemen kívül minden elemnek van multiplikatív inverze, akkor a gyűrű test. Ha pedig algebra, akkor test fölötti algebra. Az egész számok nem alkotnak testet; csak az 1 és a -1 inverze egész.
A moduláris aritmetikában is definiálható multiplikatív inverz: az a szám által reprezentált maradékosztály multiplikatív inverze az a maradékosztály, melynek van olyan x eleme, hogy ax ≡ 1 (mod n). Ez az inverz akkor létezik, ha a és n relatív prímek. Például a 3-nak multiplikatív inverze 4 modulo 11, mivel 4 · 3 ≡ 1 (mod 11). A kiterjesztett euklideszi algoritmussal ki is számítható.
A szedeniók olyan algebrai struktúrát alkotnak, ahol vannak nullosztók, de minden nullától különböző elemnek van inverze.
Egy gyűrű fölötti négyzetes mátrix akkor és csak akkor invertálható, ha determinánsa is. Ha a mátrixokat lineáris transzformációknak tekintjük egy adott bázisban, akkor az inverz mátrix az inverz lineáris transzformációt írja le ugyanabban a bázisban. Egy általánosabb függvény esetén azonban a két eset különböző eredményt ad, melyeket szigorúan meg kell különböztetni.
A trigonometrikus függvények párokba állíthatók. A szinusz reciproka a koszekáns, a koszinusz reciproka a szekáns, a tangens reciproka a kotangens, és megfordítva.
Komplex számok
szerkesztésHa z = a + bi nullától különböző komplex szám, akkor inverze kiszámítható a következőképpen:
A levezetéshez 1/z-t bővítettük az komplex konjugálttal, és felhasználtuk, hogy az a2 + b2 valós szám.
Innen kiszámítható, hogy, ha ||z||=1, akkor , azaz egységnyi abszolútértékű komplex szám inverze megegyezik a konjugáltjával.
Ha z = r(cos φ + i sin φ) poláris alakban megadott komplex szám, akkor a szög az ellentettjére, és az abszolútérték a reciprokára változik:
Negatív kitevős hatványok
szerkesztésA permanenciaelv szerint a negatív kitevős hatványok a pozitív hatvány reciprokaiként értelmezhetők, ugyanis így lehet megőrizni a hatványozás azonosságait. Így
mivel
és
Analízis
szerkesztésA valós analízisben az 1/x = x−1 függvény deriváltja a hatványfüggvények deriválási szabályával számítható ki, ahol a kitevő -1:
Az integrál számításához nem használható a hatványfüggvények integrálási szabálya, mivel az nullával osztáshoz vezet:
Az integrál megkapható más módon:
ahol ln a természetes logaritmus. Ehhez vegyük észre, hogy ; tehát, ha , és , akkor: [2]
Kiszámítása
szerkesztésA reciprok tizedes tört alakja kiszámítható osztással. Sok osztási algoritmus azonban a reciprok kiszámításával kezdődik; azaz először kiszámolja a reciprokot, aztán szoroz az osztandóval. Felismerve, hogy az függvénynek nullhelye van x = 1/b-ben, a reciprok Newton-módszerrel megkereshető:
Ez folytatható a kívánt pontosság eléréséig. Például szeretnénk kiszámítani az 1/17 ≈ 0,0588 -at három tizedesjegy pontossággal. Legyen x0 = 0,1; ekkor
- x1 = 0,1(2 − 17 × 0,1) = 0,03
- x2 = 0,03(2 − 17 × 0,03) = 0,0447
- x3 = 0,0447(2 − 17 × 0,0447) ≈ 0,0554
- x4 = 0,0554(2 − 17 × 0,0554) ≈ 0,0586
- x5 = 0,0586(2 − 17 × 0,0586) ≈ 0,0588
A kezdőértéket általában úgy állapítják meg, hogy kerekítenek a kettő legközelebbi hatványára, majd biteltolással veszik annak reciprokát.
A módszer általánosítható például mátrixok inverzeinek meghatározására.
A konstruktív matematikában egy valós x számra nem elég az x ≠ 0 egyenlőtlenségnek teljesülnie. Kell, hogy legyen egy racionális r szám úgy, hogy 0 < r < |x|. A fent leírt algoritmus szerint: bizonyítani kell, hogy y változásai akármilyen kicsik lehetnek.
Általánosítása
szerkesztésA reciproknak megfelelő általánosabb fogalom félcsoportok, csoportok és gyűrűk esetén a multiplikatív inverz, azaz a „szorzás” műveletére vett inverz elem, amivel „szorozva” a művelet egységelemét kapjuk. Ha létezik ilyen elem, akkor az eredeti elemet invertálhatónak nevezik, ha pedig minden elem invertálható, akkor a műveletet is invertálhatónak mondják.
Példák:
- Az egész számok közötti szorzást tekintve csak az 1-nek és a -1-nek van inverze (önmaguk), ugyanis az 1-en és -1-en kívül egyetlen egészhez sincsen olyan másik egész, hogy szorzatuk az 1-et adná.
- A maradékosztályok gyűrűjében éppen azok az elemek invertálhatók, amik a modulushoz relatív prímek. Ezek a maradékosztályok a redukált maradékosztályok.
- A szögfüggvények közül a szinusz és a koszekáns, a koszinusz és a szekáns, a tangens és a kotangens egymás reciproka minden olyan helyen, ahol az egyes párok mindkét tagja értelmezve van. Ez a kapcsolat nem tévesztendő össze a trigonometrikus függvények inverz függvényeivel, az árkuszfüggvényekkel.
- A racionális, a valós és a komplex számok esetében (külön-külön tekintve őket) a nulla kivételével minden elemnek van inverze.
- Egy csoport összes eleme invertálható a csoport asszociatív szorzás műveletére nézve. Ezért az invertálást sokszor egy változós műveletként tekintik.
A nem kommutatív algebrai struktúrákban még nagyobb az inverz jelentősége, mert ott a jobbról és a balról osztás helyett az inverzzel való szorzást használják.
További megjegyzések
szerkesztésEgy olyan algebrai struktúrában, ahol a szorzás asszociatív, az invertálható elemek nem lehetnek nullosztók. Az x elem nullosztó, ha nullelemtől különböző, és van olyan y elem, melyekre xy = 0. Ehhez elég megszorozni az xy = 0 egyenletet balról x reciprokával, és az asszociativitást felhasználva egyszerűsíteni. Asszociativitás hiányában a szedeniók szolgálnak ellenpéldával.
Az előző állítás megfordítása csak véges gyűrűkben teljesül. Például az egész számok gyűrűje asszociatív, de csak az 1-nek és a -1-nek van benne inverze. Véges gyűrűben minden olyan nem nulla elem invertálható, ami nem nullosztó. Először is, figyeljük meg, hogy f(x) = ax injektív függvény: ha f(x) = f(y), akkor x = y:
A különböző elemek különböző elemekre képeződnek le, a kép ugyanezekből a véges számú elemekből áll; emiatt a leképezés szükségképpen szürjektív függvény is. Speciálisan, az egységelem is előáll valamilyen x-re, ax = 1; ez az x elem az a elem inverze.
Alkalmazások
szerkesztésEgyes osztási eljárások először kiszámítják az inverzet, majd szoroznak az osztandóval.
Ha q alkalmas biztonságos prím, akkor 1/q kifejtése bármely számrendszerben alkalmas álvéletlen számok generálására.[3] Egy biztonságos prím 2p + 1 alakú, ahol p újra prím. A kifejtéssel nyert álvéletlen sorozat hossza q − 1.
Kapcsolódó szócikkek
szerkesztés- Ellentett, az összeadásra vett (additív) inverz
További információk
szerkesztésJegyzetek
szerkesztés- ↑ " In equall Parallelipipedons the bases are reciprokall to their altitudes". OED "Reciprocal" §3a. Sir Henry Billingsley translation of Elements XI, 34.
- ↑ Anthony, Dr.: Proof that INT(1/x)dx = lnx. Ask Dr. Math. Drexel University. (Hozzáférés: 2013. március 22.)
- ↑ Mitchell, Douglas W., "A nonlinear random number generator with known, long cycle length," Cryptologia 17, January 1993, 55–62.
Források
szerkesztés- Hajdu Sándor: Matematika 6., Műszaki Kiadó
- Kovács Zsongorné, Sz. Földvári Vera, Szeredi Éva: Matematika általános iskola 7., Műszaki Kiadó
- Kosztolányi József, Kovács István, Pintér Klára, Dr. Urbán János, Vincze István: Sokszínű matematika 9., Mozaik Kiadó
- Bárczy Barnabás: Trigonometria
- Pósa Lajos: Összefoglalás, Műszaki Kiadó
- Hajnal Imre: Matematika III., Tankönyvkiadó
- Kiss Emil: Bevezetés az algebrába
- Császár Ákos: Valós analízis, Tankönyvkiadó
- Freud–Gyarmati: Számelmélet
- Maximally Periodic Reciprocals, Matthews R.A.J. Bulletin of the Institute of Mathematics and its Applications vol 28 pp 147–148 1992
Fordítás
szerkesztésEz a szócikk részben vagy egészben a Multiplicative inverse című angol Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.