Főmenü megnyitása

Rendszermag (angolul kernel): az operációs rendszer alapja (magja), amely felelős a hardver erőforrásainak kezeléséért (beleértve a memóriát és a processzort is).

A többfeladatos rendszerekben – ahol egyszerre több program is futhat – a kernel felelős azért, hogy megszabja, hogy melyik program és mennyi ideig használhatja a hardver egy adott részét (ezen módszer neve a multiplexálás). A hardver elemek használata gyakran bonyolult programrészeket igényel, ezért ezt a feladatot gyakran egységes, absztrakt hardverelérést biztosító részekkel támogatja. Ezek a részek elrejtik a bonyolult módszereket és egy tiszta, egyszerű felületet biztosítanak, amivel megkönnyítik a hardverelemeket használó programozók munkáját.

A rendszermag nem „látható” program, hanem a háttérben futó, a legalapvetőbb feladatokat ellátó program.

Egy számítógép működéséhez nem feltétlenül szükséges operációs rendszer és annak magja: az egyes programok közvetlenül betölthetőek és használhatóak a „csupasz vason”, feltéve, hogy a programozó vállalja azt, hogy mindent közvetlenül, operációs rendszeri segítség nélkül fog kezelni. A kezdeti számítógépek esetén ez volt a normális működési mód: minden egyes új program elindításához a gépet újra kellett indítani. Az idő előrehaladtával apró segédprogramok, rutinok állandósulni kezdtek, azokat több programhoz is használták, és kialakultak azok a szokásos programrészek, melyeket újraindítás után újra használni szerettek volna, mint például egyes betöltő (indító, boot) programok vagy hibakeresők. Ezekből alakultak ki a kezdeti operációs rendszerek.

A kerneleknek négy fő kategóriáját különböztethetjük meg (eltekintve azon programkörnyezetektől, melyek kernel nélkül futnak):

  • a monolitikus kernelek gazdag és hatékony absztrakciókat biztosítanak az alattuk található hardware elemekhez;
  • a mikrokernelek egy kis méretű alapkészletet biztosítanak a hardware kezeléséhez, és számos alkalmazással – amiket „szervereknek” nevezünk – biztosítják a további, részletesebb funkcionalitást;
  • a hibrid vagy módosított mikrokernelek hasonlóak a színtiszta mikrokernelekhez de több, részletesebb kódot tartalmaznak a kernelmagban, hogy nagyobb sebességet érjenek el;
  • az exokernelek (vagy rendszer rutinkönyvtárak) nem biztosítanak absztrakciókat vagy állandó rendszermagot, hanem egy programokban használható rutinkönyvtárból állnak, ami a hardver közvetlen vagy közvetett elérését biztosítja.

Tartalomjegyzék

Monolitikus kernelekSzerkesztés

A monolitikus kernel, a számítógépes operációs rendszerek között, az egyetlen nagy programból álló rendszermag, nem pedig különálló, egymással különböző interfészeken keresztül kommunikáló programok összessége, mint napjaink mikrokernelei. A Linux rendszer magja még kifejlesztése után 15 év elteltével is monolitikus felépítésű, noha Andrew S. Tanenbaum professzor már kezdetben elavultnak nevezte a monolitikus struktúra miatt.

Az operációs rendszerek kutatói manapság már inkább mikrokernellel működő rendszereket javasolnak, hiszen így könnyebb fejleszteni, és a rendszer funkcionalitása is gazdagabb lehet.

Példák monolitikus kernelre:

  • tradicionális UNIX kernelek, mint amilyenek a BSD-k,
  • a Linux kernel is lehet ilyen, ha akarjuk

MikrokernelekSzerkesztés

A mikrokernelek azáltal, hogy az általuk nyújtott funkciók nagy részét felhasználói szintre (userspace) helyezték egy plusz absztrakciós szintet biztosítanak. Ennek előnye, hogy a felhasználói szinten futó programrészek hibáinak vagy működési zavarainak esetén azok nem veszélyeztetik magának a rendszermagnak a működését, és így a rendszer stabilitása nagy mértékben nő. Hátránya azonban, hogy – mint minden új absztrakciós szint bevezetésének – ezzel csökken a rendszer teljesítménye, és így esetleg egyes kritikus feladatokat (nagyon gyors és pontos elérést igénylő hardware elemek kezelését) nem tudja hatékonyan megoldani.

Példák mikrokernelekre és olyan operációs rendszerekre, melyek mikrokernelt használnakSzerkesztés

Hibrid kernelekSzerkesztés

A hibrid kernelek alapjában véve olyan mikrokernelek, amelyekben néhány „nem létfontosságú” kódrészletet átmozgattak a felhasználói szintről (userspace) a kernel szintre (kernelspace) azért, hogy az kevesebb absztrakciót használva, gyorsabban fusson.

Néhányan összetévesztik a „hibrid kerneleket” az olyan monolitikus kernelekkel, amelyek indulásuk után modulokat képesek betölteni. Ez helytelen: a „hibrid” kifejezés utal arra, hogy a kérdéses kernelnek mind a monolitikus, mind a mikrokernelek elveit és mechanizmusait alkalmazza; különösen az üzenetcserét (message passing) és a „nem létfontosságú” kódok felhasználói szintre való áthelyezését amellett, hogy néhány ilyen kód teljesítményi okokból a kernelmagba kerül.

Példa hibrid kernelekreSzerkesztés

ExokernelekSzerkesztés

Az exokernelek radikálisan új megközelítést jelentenek, és az eredmény egy nagyon kis méretű rendszermag. Gyakorlatilag a programozó tudja eldönteni, hogy a kernel mely részeit kívánja alkalmazni, és így a lehető legpontosabban szabályozhatja a hardware hozzáférések módját, és nem alkalmaz olyan rendszermag–részeket, melyekre nincs szüksége.

Az exokernelek elve legalább 1995 óta létezik [1], de 2004-ben még mindig inkább csak fejlesztési és kutatási stádiumról beszélhetünk, és jelenleg még nem használják kereskedelmi forgalomban levő vagy elterjedt rendszerekben. Egy exokernelen alapuló rendszer a Nemesis, melyet a Cambridge-i Egyetem, a Glasgow-i Egyetem, a Citrix Systems és a Svéd Számítógéptudományi Intézet dolgozott ki. Az MIT is számos exokernel alapú rendszert épített már.


További információkSzerkesztés