„Peter Gustav Lejeune Dirichlet” változatai közötti eltérés

A [[számelmélet]]ben bebizonyította a ma [[Dirichlet-tétel]]nek nevezett állítást, miszerint bármely, természetes számokból álló <math>a, a+b, a+2b, a+3b, ..., a + nb,\dots</math> [[számtani sorozat]]ban végtelen sok [[prímszám]] van, ha ''a''-nak és ''b''-nek nincs (1-től különböző) közös osztója ([[relatív prím]]ek).
 
Számelméleti kutatásai rengeteg [[absztrakt algebrai]] eredmény kidolgozására inspirálták. Nagy szerepe volt az [[algebrai számelmélet]] kidolgozásában, illetve a [[Galois-elmélet]] modern, testleképezések (izomorfizmusok, automorfizmusok) segítségével való formába öntésében, valamint Garret Birkhoff mellett ő volt a [[hálóelmélet]] kidolgozója. Fő műve egy számelméleti jellegű, habár a számelmélet „ürügyén” több más témával is foglalkozó, posztumusz (1863) megjelent monográfia, a ''Vorlesungen'' (ber Zahlentheorie).
 
Egyik első megfogalmazója volt a modern, elvont, „nemkívánatos” (nehezen kezelhető, értelmezhető) szemléletes tartalmától (mozgás, változás) „megtisztított” függvényfogalomnak, amely a függvényt mint egyértelmű hozzárendelést (relációt) definiálja.
485

szerkesztés