„Peter Gustav Lejeune Dirichlet” változatai közötti eltérés

→‎Munkássága: most már aztán tényleg egyértelmű, mit csinált Dirichlet és mit Dedekind
(→‎Munkássága: most már aztán tényleg egyértelmű, mit csinált Dirichlet és mit Dedekind)
==Munkássága==
 
Számos, ma az ő nevével megjelölt eredménye volt a [[matematika]] jó néhány ágában. Egyik fő műve egy számelméleti jellegű, habár a számelmélet „ürügyén” néhány más témával is foglalkozó, [[posztumusz]] (először 1863-ban kiadott) [[monográfia]], a ''Vorlesungen'' (''über Zahlentheorie''). Dirichlet 1959-es halála után a Berlini Egyetemen évekig vele együtt dolgozó kollégája és barátja, Dedekind adta ki a művet, és az évek során tizenegy függelékkel bővítette, melyek részben saját, részben Dirichlet ki nem adott felfedezései, megjegyzései voltak. Bár a tétel a VI. számú Dedekind-függelékben jelent meg, a tételt és bizonyítását is eredetileg Dirichlet dolgozta ki. <ref>Dean, E. T.: ''[http://repository.cmu.edu/cgi/viewcontent.cgi?article=1103&context=philosophy Dedekind's treatment of Galois Theory in the Vorlesungen]''. A ''Dietrich College of Humanities and Social Sciences'' Filozófiai Tanszékének közleményei, 109. sz., 2009; 3-4. o. [[Angol nyelv]]en, [[pdf]]. Hozzáférés: 2012-04-27.</ref>.
Számos, ma az ő nevével megjelölt eredménye volt a [[matematika]] jó néhány ágában.
 
A [[számelmélet]]ben bebizonyította a ma [[Dirichlet-tétel]]nek nevezett állítást, miszerint bármely, természetes számokból álló <math>a, a+b, a+2b, a+3b, ..., a + nb,\dots</math> [[számtani sorozat]]ban végtelen sok [[prímszám]] van, ha ''a''-nak és ''b''-nek nincs (1-től különböző) közös osztója ([[relatív prím]]ek).
 
Számelméleti kutatásai rengeteg [[absztrakt algebrai]] eredmény kidolgozására inspirálták. Nagy szerepe volt az [[algebrai számelmélet]] kidolgozásában, illetve a [[Galois-elmélet]] modern, testleképezések (izomorfizmusok, automorfizmusok) segítségével való formába öntésében, valamint Garret Birkhoff mellett ő volt a [[hálóelmélet]] kidolgozója. Fő műve egy számelméleti jellegű, habár a számelmélet „ürügyén” több más témával is foglalkozó, posztumusz (1863) megjelent monográfia, a ''Vorlesungen'' (ber Zahlentheorie).
 
Egyik első megfogalmazója volt a modern, elvont, „nemkívánatos” (nehezen kezelhető, értelmezhető) szemléletes tartalmától (mozgás, változás) „megtisztított” függvényfogalomnak, amely a függvényt mint egyértelmű hozzárendelést ([[reláció]]t) definiálja.