„Szerkesztő:Kaboldy/Repülő” változatai közötti eltérés

Tartalom törölve Tartalom hozzáadva
Nincs szerkesztési összefoglaló
1. sor:
'''Kisminta törvények''' vagy '''affinitási törvények''' azonos dinamikai jellemzőjű áramlástani gépek ([[szivattyú]], [[ventilátor]], [[vízturbina]]) teljesítmény jellemzőinek a tervezettől eltérő viszonyok közötti közelítő meghatározására szolgáló összefüggések. Az áramlástani gépek összehasonlítására két dimenzió nélküli számot használnak. A ''nyomásszám'':
'''Kisminta törvények''' vagy '''affinitási törvények'''
:<math>\psi=\frac{\Delta p}{\frac{\rho}{2}u_k^2} </math>,
ahol
:<math> \Delta p </math> a gép előtt és után mért közegnyomás különbsége,
:<math> \rho </math> a közeg sűrűsége és
:<math> u_k </math> a forgórész legnagyobb '''D''' átmérőjének kerületi sebessége.
<!--
The '''affinity laws''' are used in [[hydraulics]] and [[HVAC]] to express the relationship between variables involved in pump or fan performance (such as [[head (hydraulic)|head]], [[volumetric flow rate]], shaft speed) and [[Power (physics)|power]]. They apply to [[pump]]s, [[fan (mechanical)|fans]], and [[hydraulic turbine]]s. In these rotary implements, the affinity laws apply both to centrifugal and axial flows.
 
The affinity laws are useful as they allow prediction of the head discharge characteristic of a pump or fan from a known characteristic measured at a different speed or impeller diameter. The only requirement is that the two pumps or fans are dynamically similar, that is the ratios of the fluid forced are the same.
 
'''Law 1. With impeller diameter (D) held constant:'''
 
Law 1a. Flow is proportional to shaft speed: <ref name=pumpfun>{{cite web|url=http://www.pumpfundamentals.com/yahoo/affinity_laws.pdf|title=Affinity Laws|work=www.pumpfundamentals.com}}</ref>, <ref>{{cite web|url=http://www.airturbine.com/fanlaws.html|title=Basic Fan Laws - Axial Fan Blades|work=airturbine propeller company}}</ref>
: <math> { Q_1 \over \ Q_2} = { \left ( {N_1 \over N_2} \right )} </math>
Law 1b. Pressure or Head is proportional to the square of shaft speed:
: <math> {H_1 \over H_2} = { \left ( {N_1 \over N_2} \right )^2 }</math>
 
Law 1c. Power is proportional to the cube of shaft speed:
: <math> {P_1 \over P_2} = { \left ( {N_1 \over N_2} \right )^3 }</math>
 
'''Law 2. With shaft speed (N) held constant:''' <ref name=pumpfun />
 
Law 2a. Flow is proportional to the cube of impeller diameter:
: <math> { Q_1 \over \ Q_2} = { \left ( {D_1 \over D_2} \right )^3 } </math>
Law 2b. Pressure or Head is proportional to the square of impeller diameter:
: <math> {H_1 \over H_2} = { \left ( {D_1 \over D_2} \right )^2 }</math>
 
Law 2c. Power is proportional to the fifth power of impeller diameter:
: <math> {P_1 \over P_2} = { \left ( {D_1 \over D_2} \right )^5 }</math>
http://www.engineeringtoolbox.com/affinity-laws-d_408.html
 
where
* <math> Q </math> is the volumetric flow rate (e.g. [[Cubic feet per minute|CFM]], GPM or L/s),
* <math> D </math> is the impeller diameter (e.g. in or mm),
* <math> N </math> is the shaft rotational speed (e.g. [[rpm]]),
* <math> H </math> is the pressure or head developed by the fan/pump (e.g. ft or m), and
* <math> P </math> is the shaft power (e.g. W).
 
These laws assume that the pump/fan efficiency remains constant i.e. <math> \eta_1 = \eta_2 </math> . When applied to pumps the laws work well for constant diameter variable speed case (Law 1) but are less accurate for constant speed variable impeller diameter case (Law 2).
 
==References==
<references />
-->
==Külső hivatkozások==
* [http://www.ontozesmuzeum.hu/3.%20ViZGAZD%20Orvenyszivattyuk.pdf Szlivka Ferenc: Vízgazdálkodás gépei]