Főmenü megnyitása

Módosítások

a
typog
Ezt az erőt ellensúlyozza a folyadék és az üveg részecskéi között működő adhéziós erő felfelé mutató komponense (''F''<sub>γ</sub>):
 
:<math> F_\mathrm{\gamma} = 2r\pi \gamma \mathrm{cos} \mathit \Theta \ . </math>
 
A két erő egyenlősége esetén a folyadék emelkedésének vagy süllyedésének mértéke, a ''h'' kiszámítható:
 
:<math>h = \frac {2\gamma \mathrm {cos} \mathit \Theta}{\rho g r} \ . </math>
<br clear="left">
 
A '''kapilláris emelkedés''' ('''süllyedés''') módszerével a felületi feszültség meghatározását a folyadékba merülő ''r'' sugarú kapillárisban ''h'' magasra emelkedő (vagy mélyre süllyedő) folyadék hidrosztatikai nyomásának mérésére vezetjük vissza. A ''ρ'' [[sűrűség]]ű folyadékoszlop súlya egyensúlyt tart a meniszkusznál fellépő adhéziós erővel. A fentebb már levezetett összefüggésből a felületi feszültségre az alábbi egyenlet adódik:
 
:<math>\gamma = \frac{r\rho g h}{2 \mathrm {cos} \mathit \Theta} \ . </math>
 
Az egyenletben:
amiből a felületi feszültség:
 
:<math>\gamma = 0{,}5 rp_\gamma \ .</math>
 
Lassú buborékolás esetén a kapilláris végén képződő buborékban kialakuló nyomás (p<sub>γ</sub>) és a kapilláris bemerüléséből származó hidrosztatikai [[nyomás]] (''p''<sub>h</sub>) összege azonos az edényben levő [[nyomás]] és a külső légnyomás közötti különbséggel (''p''<sub>m</sub>), amit a manométerrel mérünk, vagyis:
A vizsgált folyadék felületi feszültsége a
 
:<math>\gamma = 0{,}5 (h_\mathrm m - h_\mathrm v)\rho gr \ ,</math>
 
kifejezéssel számítható.
A [[víz]] hőmérséklettől függő felületi feszültsége ''t'' °C-on a
 
:<math>\gamma = 0{,}0729 - 1{,}55\cdot 10^{-4} (t- 18 ) \ , \mathrm {N\cdot m^{-1}} \ ,</math>
 
egyenletből számítható ki. Ennek ismeretében a kapilláris sugara az:
55

szerkesztés