„Nullmátrix” változatai közötti eltérés

[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Nincs szerkesztési összefoglaló
Nincs szerkesztési összefoglaló
7. sor:
\mathbf 0_{1,1} = \begin{bmatrix}
0 \end{bmatrix}
,\
\mathbf 0_{2,2} = \begin{bmatrix}
0 & 0 \\
0 & 0 \end{bmatrix}
,\
\mathbf 0_{2,3} = \begin{bmatrix}
0 & 0 & 0 \\
21. sor:
 
<!--
The set of ''m''&times;''n'' matrices with entries in a [[ring (mathematics)|ring]] K forms a ring <math>K_{m,n} \,</math>. The zero matrix <math>0_{K_{m,n}} \, </math> in <math>K_{m,n} \, </math> is the matrix with all entries equal to <math>0_K \, </math>, where <math>0_K \, </math> is the additive identity in K.
Dla danej macierzy <math>A=(a_{ij}) \in M_{n \times m}(K)</math> musi być:
 
:<math>a_{ij} = 0</math> dla dowolnych <math>1 \le i \le n,\ 1 \le j \le m</math>.
 
Jest ona często oznaczana duża [[alfabet grecki|grecką literą]] ''theta'', czasami z wyszczególnieniem indeksu, mianowicie <math>\Theta_{n \times m}</math> lub poprzez pogrubienie znaku zera – <math>\mathbf 0_{n \times m}</math>.
 
Macierz zerowa jest [[element zerowy|elementem zerowym]] [[grupa (matematyka)|grupy]], a nawet [[pierścień (matematyka)|pierścienia]] macierzy ustalonego [[wymiar]]u.
 
The set of ''m''&times;''n'' matrices with entries in a [[ring (mathematics)|ring]] K forms a ring <math>K_{m,n} \,</math>. The zero matrix <math>0_{K_{m,n}} \, </math> in <math>K_{m,n} \, </math> is the matrix with all entries equal to <math>0_K \, </math>, where <math>0_K \, </math> is the additive identity in K.
 
:<math>
35 ⟶ 27 sor:
0_K & 0_K & \cdots & 0_K \\
0_K & 0_K & \cdots & 0_K \\
\vdots & \vdots & & \vdots \\
0_K & 0_K & \cdots & 0_K \end{bmatrix}
</math>
 
The zero matrix is the additive identity in <math>K_{m,n} \, </math>. That is, for all <math>A \in K_{m,n} \, </math> it satisfies
 
:<math>0_{K_{m,n}}+A = A + 0_{K_{m,n}} = A</math>
 
There is exactly one zero matrix of any given size ''m''&times;''n'' having entries in a given ring, so when the context is clear one often refers to ''the'' zero matrix. In general the zero element of a ring is unique and typically denoted as 0 without any subscript indicating the parent ring. Hence the examples above represent zero matrices over any ring.
 
The zero matrix represents the [[linear transformation]] sending all vectors to the [[zero vector]].