„Abszolút konvergencia” változatai közötti eltérés

→‎Háttere: Kapcsolat a konvergenciával
[ellenőrzött változat][ellenőrzött változat]
(Háttere)
(→‎Háttere: Kapcsolat a konvergenciával)
Tanulmányozása azért fontos, mert egyrészt viszonylag gyakori, másrészt elég erős ahhoz, hogy olyan tulajdonságok is bizonyíthatók legyenek, amelyek más sorokra nem teljesülnek.
==Háttere==
Egy konvergens sor tagjai nemcsak valós vagy komplex számok lehetnek, hanem tetszőleges topologikus Abel-csoport elemei is. Az abszolút konvergencia ezen kívül megköveteli az abszolútérték általánosítását is, a normát. Itt a továbbiakban a csoportra additív jelölést használunk, így a ''G'' csoport egységeleme helyett nullelemről beszélünk, és 0-val jelöljük.
 
A normára teljesülnek a következők:
*Minden ''x'' elemre <math>\|-x\| = \|x\|.</math>
*Minden ''x'', ''y'' elemre <math>\|x+y\| \leq \|x\| + \|y\|.</math>
 
Ekkor ''G'' a <math>d(x,y) = \|x-y\|</math> távolsággal metrikus tér, és ebben értelmezhető az abszolút konvergencia: <math>\sum_{n=0}^{\infty} \|a_n\| < \infty.</math>
 
Valós vagy kmplex számok esetén alkalmazható az abszolútérték, mint norma.
==Kapcsolat a konvergenciával==
Ha a fenti ''G'' teljes a fenti ''d'' metrikára, akkor az abszolút konvergens sorozatok konvergensek. Ezt általában is a komplex esethez hasonlóan lehet bizonyítani. A teljességből következik a Cauchy-konvergenciakritérium, és a háromszögegyenlőtlenséget kell alkalmazni.
 
[[Kategória:Analízis]]