„Párhuzamosság” változatai közötti eltérés

a
4 bites, 3 dimenziós, n elemű stb. kötőjel nélkül; OH 411. (helyesírási javítás kézi ellenőrzéssel)
Nincs szerkesztési összefoglaló
a (4 bites, 3 dimenziós, n elemű stb. kötőjel nélkül; OH 411. (helyesírási javítás kézi ellenőrzéssel))
Ezeket a definíciókat rendszerint legalább egydimenziós alterekre alkalmazzák, hiszen eszerint a pontok és az üres halmaz mindennel párhuzamos lenne.
===Tulajdonságai===
Az így általánosított párhuzamosság a vektortér rögzített dimenziójú eltolt alterein ekvivalenciareláció. Ezek az osztályok a párhuzamos nyalábok, vagy párhuzamos altérsorok. Ha a rögzített dimenzió 1, akkor párhuzamos egyenesnyalábról, ha 2, akkor párhuzamos síksorról, ha ''n''-1, akkor párhuzamos hipersíksorról van szó. Az affin geometria nyelvén azok a ''k''- dimenziós affin alterek párhuzamosak, amelyek a végtelen távoli hipersíkon (''k''-1)-dimenziós altérben metszik egymást. Az összes affin altér halmazán a párhuzamosság szimmetrikus és reflexív, de nem tranzitív reláció.
==Rokon fogalmak==
A párhuzamos eltolás minden pontot egy adott távolsággal tol el egy adott irányban. Vektoriálisan, <math> x \mapsto x+a </math>. Így futhatnak párhuzamosan félegyenesek és szakaszok is. Hasonlóan eltolhatók görbék is a normálisuk irányában. A <math> \gamma(s) \in \mathbb{R}^2 </math> görbének párhuzamos görbéi a <math> \gamma(s) \pm a n(s) </math> görbék, ahol <math> n(s) </math> normálvektora <math> \gamma(s) </math>-nek. Erre példák a koncentrikus körök.
168 346

szerkesztés