„Formális hatványsor” változatai közötti eltérés

nincs szerkesztési összefoglaló
[ellenőrzött változat][ellenőrzött változat]
(→‎Forrás: Gonda könyv cite book sablonnal)
Nincs szerkesztési összefoglaló
*Gyűrű feletti [[polinomgyűrű]], és az ugyanazon gyűrű fölött vett formális hatványsorok gyűrűje egyszerre [[kommutatív]], [[egységelem]]es vagy [[nullosztómentes]], ha az alapgyűrű is az
*Ha '''s''' egy egységelemes gyűrű fölötti hatványsor, és <math>k \in \N _0</math>, akkor <math>(x^k\mathbf s)_i=0</math>, ha ''i'' > k, és <math>(x^k\mathbf s)_i= \mathbf s_{i-k}</math>, ha <math>k \leq i \in \N _0</math>
*Az egy határozatlanúegyhatározatlanú formális hatványsorok gyűrűje egyben [[modulus]] is az alapgyűrű fölött. Ez a modulus pontosan akkor [[unitér modulus|unitér]], ha az alapgyűrű egységelemes. Pontosan akkor [[vektortér]], ha az alapgyűrű ferdetest, és pontosan akkor [[algebra]], ha az alapgyűrű test. Ekkor rangja végtelen. Hasonlóak érvényesek a polinomgyűrűre is
*Hatványsor akkor és csak akkor egység, ha konstans tagja egység az alapgyűrűben. Speciálisan, [[ferdetest]] feletti formális hatványsor pontosan akkor egység, ha konstans tagja nem nulla
*Hatványsor akkor és csak akkor felbonthatatlan, ha konstans tagja az alapgyűrűben felbonthatatlan
*Ha az alapgyűrű [[test (algebra)|test]], akkor a formális hatványsorok gyűrűje euklideszi
*Test feletti hatványsorok gyűrűjének elemei <math>x^u \mathbf s</math> alakúak, ahol ''u'' egész. Ez a test az alaptest fölötti [[Laurent-sor]]ok testjeteste
 
==Forrás==