„Cauchy-integrálképlet” változatai közötti eltérés

[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
→‎Következményei: A következmények bizonyítása
31. sor:
Kiszámíthatók integrálok is, például:
:<math>\oint_{\partial U_2(0)}\frac{e^{2\zeta}}{\left(\zeta+1\right)^4}\mathrm{d}\zeta = \frac{2\pi\mathrm{i}}{3!}\frac{\mathrm{d}^3}{\mathrm{d}z^3}e^{2z}|_{z=-1} = \frac{8\pi\mathrm{i}}{3e^2}</math>
==A következmények bizonyítása==
A Cauchy-integrálképletet parciálisan differenciáljuk, amiben a differenciálás és az integrálás felcserélhető:
:<math>\begin{align} f^{(n)}|_{U}(z) & =\frac{\partial^{n}f}{\partial z^{n}}|_{U}(z)=\frac{1}{2\pi\mathrm{i}}\frac{\partial^{n}}{\partial z^{n}}\oint_{\partial U}\frac{f(\zeta)}{\zeta-z}\mathrm{d}\zeta\\ & =\frac{1}{2\pi\mathrm{i}}\oint_{\partial U}f(\zeta)\underbrace{\frac{\partial^{n}}{\partial z^{n}}\frac{1}{\zeta-z}}_{n!/(\zeta-z)^{1+n}}\mathrm{d}\zeta=\frac{n!}{2\pi\mathrm{i}}\oint_{\partial U}\frac{f(\zeta)}{(\zeta-z)^{1+n}}\mathrm{d}\zeta\end{align} </math>