„Newton-féle gravitációs törvény” változatai közötti eltérés

nincs szerkesztési összefoglaló
a (ISBN/PMID link(ek) sablonba burkolása MediaWiki RfC alapján)
Címkék: Mobilról szerkesztett Mobil web szerkesztés
A '''Newton-féle gravitációs törvény''' szerint bármely két test kölcsönösen vonzza egymást. Két pontszerűnek tekinthető test között ez az erő egyenesen arányos a tömegek szorzatával, és fordítottan arányos a köztük lévő távolság négyzetével.
 
Newton a tapasztalati megfigyelésekből indukcióval levezetett összefüggést arányosság formájában fogalmazta meg<ref>Isaac Newton: "In [experimental] philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction": "[[Philosophiae Naturalis Principia Mathematica|Principia]]", Book 3, General Scholium, at p.392 in Volume 2 of Andrew Motte's English translation published 1729.</ref> és a ''[[Philosophiae Naturalis Principia Mathematica]]'' művében publikálta 1687. július 5-én. Amikor a [[Royal Society]] előtt bemutatta könyvét, [[Robert Hooke]] azt állította, hogy Newton tőle vette át az [[inverz négyzetes törvény]]t.
* ''m''<sub>1</sub> és ''m''<sub>2</sub> – [[kilogramm]] (kg)
* ''r'' – [[méter]]
* ''G'' – ma elfogadott értéke<ref>http://physics.nist.gov/cuu/Constants/Preprints/lsa2010.pdf</ref>:<math> = \left(6,67384 \plusmn 0,0008 \right) \times 10^{-11} \ \mbox{N} \ \mbox{m}^2 \ \mbox{kg}^{-2} \ ,</math>time
 
Newton maga nem írta fel így ezt az összefüggést, nem vezette be és nem is mérte meg a ''G'' értékét. [[Henry Cavendish]] brit fizikus 1798-ban állított össze először egy olyan kísérleti elrendezést, ami alkalmas lehetett a [[gravitációs állandó]] értékének meghatározására<ref>[http://www.public.iastate.edu/~lhodges/Michell.htm The Michell-Cavendish Experiment], Laurent Hodges</ref>pub
 
A Newton-féle gravitációs törvény formailag hasonlít a [[Coulomb-törvény]]hez, mely két töltött részecske közötti elektromos erőhatásról szól. Mindkettő [[inverz négyzetes törvény]], ahol az erő fordítottan arányos a távolság négyzetével.
 
A gravitáció jelenségének - az extrém sűrű és nagy tömegek esetén is érvényes - általánosabb leírását [[Albert Einstein]] [[általános relativitáselmélet]]e adja, de a gyenge kölcsönhatások és a kis sebességű mozgások esetén a Newton-féle leírás is jól használható. Az általános relativitáselmélet határesetként visszaadja a Newton-féle gravitációs törvényt.
 
==Térbeli kiterjedésű testek esete==
Névtelen felhasználó