„Neumann–Bernays–Gödel-halmazelmélet” változatai közötti eltérés

nincs szerkesztési összefoglaló
(kategóriaelmélet hivatkozést élővé tettem)
A "komprehenzív" kifejezés arra utal, hogy az axióma szándékozik "összegyűjteni" mindazon elemeket egy osztályba, melyre a P(x) formula tétel. A "korlátozott" szó pedig arra utal, hogy elemként íly módon csak halmazokat gyűjthetünk össze. Másrészt a "korlátozott" jelző arra is utal, hogy a P(x) formula tartalmazhat konkrét, akár valódi osztályokat is, de a (∀y) jelsor csak úgy szerepelhet benne tetszőleges y változó esetén, ha utána a Set(y) általános feltétel is szerepel benne a kvantor hatókörén belül. Ez a kissé bonyolult feltétel P(x)-re lényeges, mert ezen múlik, hogy '''NBG''' tényleg ekvikonzisztens '''ZFC'''-vel. Létezik a halmazelméletne egy olyan '''NBG''' stílusú felépítése, a [[Morse–Kelley-halmazelmélet]], melyben P(x)-re nincs a fenti megkötés. '''MK''' azonban valódi bővítése '''ZFC'''-nek és valójában a halmazelmélet egy másodrendű kalkulusával egyenértékű. Az axiómát gyakran még elkülönítési axiómának is nevezik.
 
Ebből az axiómából két, kardinális jelentősségű halmazosztály létezése következik. Az első a ''Russell-összesség'', azaz a
:<math>\mathbf{Ru}:=\{x\mid x\notin x\}</math>
osztály, mely az alábbiak szerint valódi osztály. Tegyük fel, hogy '''Ru''' halmaz. Ekkor a komprehenzivitás axiómája szerint minden ''x''-re: ''x'' &isin; '''Ru''' &#8660; (Set(x) &#8743; &#172;(x &isin; x)). Ha most ''x'' helyére '''Ru'''-t helyettesítünk, akkor azt kapjuk, hogy '''Ru''' &isin; '''Ru''' &#8660; (Set('''Ru''') &#8743; &#172;( '''Ru''' &isin; '''Ru''')), amely csak úgy lehet, ha Set('''Ru''') nem teljesül, hiszen ellenkező esetben ellentmondásra jutunk. De azt tettük fel, hogy '''Ru''' halmaz, ami szintén ellentmondás, tehát '''Ru''' nem halmaz, hanem valódi osztály.
554

szerkesztés