„Centrum (algebra)” változatai közötti eltérés

== Csoport centruma ==
 
Ha G = (U, ×, e) egy [[Csoport (matematika)|csoport]], azaz × az asszociativitáson kívül még [[invertálható művelet]], tehát létezik az e egységelem; továbbá minden g&isin;<math>\in</math>G-hez egy g<sup>-1<sup>&isin;<math>\in</math>G úgy, hogy g×g<sup>-1<sup> = g<sup>-1<sup>×g = e, akkor a G struktúra centruma is részstruktúra G-ben, azaz Z = Z(G) [[részcsoport]] G-ben.
 
Hogy Z(G) = Z zárt a × műveletre, azt [[#Félcsoport centruma|fentebb]] már láttuk. Hogy Z nem üres, azaz az egységelem az eleme, [[#Egységelemes grupoid centruma|fentebb]] azt is láttuk. Elegendő tehát a Z invertálhatóságát belátni. Ez abból a tételből következik, hogy (ab)<sup>-1</sup> = b<sup>-1</sup>a<sup>-1</sup> tetszőleges G csoportban. Ekkor ugyanis ha z&isin;<math>\in</math>Z, azaz minden x-re zx = xz, akkor ezt az egyenlőséget invertálva, a baloldalból (zx)<sup>-1</sup> = x<sup>-1</sup>z<sup>-1</sup> lesz, míg a jobboldalból (xz)<sup>-1</sup> = z<sup>-1</sup>x<sup>-1</sup> , és ezek továbbra is egyenlőek: x<sup>-1</sup>z<sup>-1</sup> = z<sup>-1</sup>x<sup>-1</sup> ; s utóbbi (figyelembe véve, hogy az i(x): G&rarr;G; i(x) = x<sup>-1</sup> leképezés [[szürjektivitás|szürjektív]]) épp azt jelenti, z<sup>-1</sup>&isin;<math>\in</math>Z is centrumelem.
 
Ennél több is teljesül, nevezetesen a centrum [[normális részcsoport|normálosztó]] G-ben. Ez adódik a definícióból, hisz egy G csoport (tartóhalmazának) nem üres N részhalmaza definíció szerint épp akkor normálosztó, ha <math> \forall g \in G \ : \ g \times N = N \times g </math> .
 
A fenti állítás egy gyakran előforduló másféle bizonyítása a [[konjugált (csoportelmélet)|konjugálás]] nevű műveletre építkezik. Ha a,b&isin;<math>\in</math>G, akkor az a elem b-vel való konjugáltjának az a°b := b<sup>-1</sup>ab elemet nevezzük; nem nehéz belátni, hogy egy egy N&le;G részcsoport akkor és csak akkor normális részcsoport G-ben, ha bármely elemének bármely G-beli elemmel való konjugáltja N-beli, azaz ha G<sup>-1</sup>NG=N.
* Ezt nem nehéz belátni: N definíció szerint akkor normális részcsoport, ha aN = Na bármely G-beli a-ra, azaz ha vannak olyan N-beli n,m elemek, hogy an = ma legyen, ekkor jobbról szorozva a inverzével, n°a = ana<sup>-1</sup> = m&isin;<math>\in</math>N tényleg igaz; ha pedig ez utóbbi igaz, akkor jobbról szorozva a-val an = ma adódik. Tehát a normálosztóság a konjugálással valóban így jellemezhető.
* Ha pedig így van, akkor elegendő megmutatni, hogy centrumelem bármely konjugáltja is centrumelem, és ebből következik, hogy a centrum normálosztó. Ha c&isinC(G), akkor tetszőleges g&isin;<math>\in</math>G-re gc = cg, ekkor szorozva g inverzével jobbról, gcg<sup>-1</sup> = c &isin;<math>\in</math> C(G), tehát C(G) normálosztó. Sőt az is látható, hogy épp a centrum elemei azok, melyeket bármely elemmel való konjugálás helybenhagy.
 
== Gyűrű centruma ==
Névtelen felhasználó