„Diszkrét eloszlás” változatai közötti eltérés

a
* Bár a fenti lottós példában a valószínűségi változó csak 90 különböző értéket vehet fel, vegyük észre, hogy a definíció megengedi, hogy a 0-nál nagyobb valószínűséggel felvett értékek akár [[végtelen]] sokan legyenek. Ez amiatt van, hogy a [[megszámlálhatóan sok|megszámlálhatóság]] nem végességet, hanem lényegében felsorolhatóságot jelent. (Meg lehet mutatni, hogy például a [0,1] intervallumba eső valós számok nem sorolhatóak fel, s így valamilyen értelemben „többen vannak”, mint a [[természetes szám]]ok.)
 
* Ha megfigyeljük, a definíció határozottan végtelennek tünteti fel az ''X'' lehetséges értékeinek halmazát. Ennek ellenére a lottós példán láttuk, hogy lehet ez a halmaz [[véges halmaz|véges]] is. Véges sok felvehető érték esetében az {x<sub>1</sub>, x<sub>2</sub>, ... , x<sub>''i''</sub>, ...} halmaz elemei egy megfelelő x<sub>''j''</sub> felett 0 valószínűséggel következnek be. A lottó konkrét esetében ez az x<sub>''j''</sub> elem a 90. elem.
 
* Érdemes kiemelni, hogy a diszkrét eloszlású valószínűségi változóra, még az első megjegyzésben elített szűkebb definíció esetén se teljesül feltétlenül, hogy az általa felvehető értékek [[topológia]]i értelemben [[diszkrét halmaz]]t alkotnak.
506

szerkesztés