„Uniform tér” változatai közötti eltérés

a
külső link
(→‎Pszeudometrikával: pszeudometrikák általi def; visszanyerhetőség)
a (külső link)
 
Minden uniform téren természetes módon értelmezhető egy topologikus struktúra, nevezetesen egy <math>G</math> halmaz pontosan akkor legyen [[nyílt]], ha bármely <math>x\in G</math>-hez létezik egy olyan <math>V</math> környék, hogy <math>V[x]</math> (<math>V</math>-nek <math>x</math>-szel vett szelete, azaz <math>\{y: (x, y)\in V\}</math>) része legyen <math>G</math>-nek. Két különböző uniform térnek lehet azonos a topologikus struktúrája.
==Külső link==
 
[http://books.google.hu/books?id=mxE8Tq2X4AQC&pg=PA112&lpg=PA112&dq=uniform+t%C3%A9r&source=bl&ots=8JvsJC-PHC&sig=YxY9Ha-Q0n8xuowXqSUee5b0w_o&hl=hu&ei=sbh3TInkMZ-jOOaQ7dcG&sa=X&oi=book_result&ct=result&resnum=2&ved=0CBoQ6AEwAQ#v=onepage&q=uniform%20t%C3%A9r&f=false Modern alkalmazott analízis]
{{csonk-dátum|csonk-mat|2007 februárjából}}