Darboux-tétel

matematikai analízis

A Darboux-tétel a matematikai analízisben azt mondja ki, hogy egy intervallumon differenciálható függvény deriváltfüggvénye olyan, hogy bármely két függvényértéke közé eső értéket felvesz. A tétel egyik következménye, hogy a deriváltfüggvénynek ugrása vagy megszüntethető szakadása semmiképpen nem lehet.

Megjegyzések szerkesztés

Az világos, hogy ha egy az   intervallumon értelmezett   valós függvény folytonosan differenciálható, akkor   két függvényértéke között minden értéket fölvesz. Ez amiatt van, hogy ekkor   folytonos  -n és a Bolzano–Darboux-tétel miatt Darboux-tulajdonságú. Ám, a deriváltfüggvények annyira speciálisak, hogy ez a tulajdonság a folytonos deriválhatóság feltétele nélkül is teljesül. Hasonló a helyzet Fermat szélsőértékekre vonatkozó tételéhez. Ha feltesszük, hogy az f:    R differenciálható függvény folytonosan differenciálható az u belső pontban és ott úgy van lokális maximuma, hogy előtte f szigorúan monoton növekvő, utána szigorúan monoton csökkenő, akkor a derivált folytonossága miatt u-ban f deriváltja nulla kell, hogy legyen. Ám –gyengítve a tétel feltételein – ez már akkor is igaz, ha a folytonos differenciálhatóságot és az előtte-utána szigorúan monoton feltételt elhagyjuk.

A tétel szerkesztés

Minden differenciálható valós-valós függvény deriváltfüggvénye Darboux-tulajdonságú.

Bizonyítás szerkesztés

Elegendő belátni, hogy ha egy f : [a,b]  R korlátos és zárt intervallumon értelmezett, differenciálható (a végpontokban balról, jobbról differenciálható) függvény olyan, hogy f '(a) < f '(b), akkor minden m ∈ (f '(a),f '(b)) nyílt intervallumbeli értékhez található olyan c ∈ (a,b) nyílt intervallumbeli pont, hogy m = f '(c).

Weierstrass tételével szerkesztés

Definiáljuk minden x ∈ [a,b]-re a

 

függvényt. Minthogy f is, így g is folytonos és differenciálható. g deriváltja:

 

azaz ha g '(x) = 0, akkor f '(x) = m, így feladatunk, hogy keressünk a belső pontok között zérushelyet g '-nek. Weierstrass tétele értelmében létezik g-nek minimuma. Ha ez a-ban van, akkor g '(a) = f '(a) – m < 0 miatt ott a függvény lokálisan csökkenne és lenne g(a)-nál kisebb értéke, ami lehetetlen. Ugyanígy g '(b) > 0 miatt lenne b előtt a függvénynek g (b)-nél kisebb értéke. A minimum helye tehát csak (a,b)-ben lehet és akkor a szélsőértékekre vonatkozó Fermat-tétel szerint ott g deriváltja 0, f deriváltja pedig, így m.

A Lagrange-féle középértéktétellel szerkesztés

Definiálni fogunk egy folytonos függvényt, melynek minden helyettesítési értéke olyan alakú, mint a Lagrange-féle középértéktételben szereplő hányados. Ennek a hányadosnak az értéke fog végigfutni az (f '(a), f '(b)) nyílt intervallum minden pontján, és így ad majd az f ' deriváltfüggvény, alkalmas c pontban m függvényértéket.

Legyen k az a és b számtani közepe. Legyen

 

Ellenőrizhetjük, hogy a g függvény k-ban is folytonos. A kissé bonyolult definíció azért van, hogy a hányadosfüggvény a végpontokban határértékként az egyoldali deriváltakat adja. Például a L’Hôpital-szabállyal vagy egyszerűen a δ = x - a   0 határátmenetet véve és az f differenciálhatóságra hivatkozva igazolhatjuk ugyanis, hogy:

  és
 

Ekkor a Bolzano–Darboux-tétel következményeként létezik olyan ξ ∈ (a,b), hogy g(ξ) = m. Attól függően, hogy ξ az (a,b) melyik felébe esik, felírható vagy

 , vagy
 

tehát a Lagrange-féle középértéktétel következményeként vagy az ( a , 2ξ-a ) vagy a ( 2ξ-b , b ) nyílt intervallum valamely c pontjában fennáll az f '(c) = m egyenlőség.

Megjegyzés szerkesztés

Világos, hogy a tétel akkor is igaz, ha f a zárt [a,b]-n folytonos, és a nyílt (a,b)-n differenciálható.

Minden folytonos függvény Darboux-féle, de a Darboux-tulajdonság nem jelent automatikusan folytonosságot, például a

 

függvény Darboux-féle, de nem folytonos.

Alkalmazás szerkesztés

A tétel szükséges kritériumot ad arra, hogy mely függvények lehetnek egy szakasz minden pontjában differenciálható függvény deriváltja:

Nem lehet derivált

Források szerkesztés

  • Császár Ákos: Valós analízis

További információk szerkesztés

A PlanetMath Darboux's theorem (analysis) szócikke