Elektrodinamikus műszer

Az elektrodinamikus műszerek ma már elsősorban villamos teljesítmény mérésére használatosak.

Fénymutatós elektrodinamikus műszer
Feszítettszálas elektrodinamikus mérőmű
Feszítettszálas elektrodinamikus mérőmű levegő csillapítással

Működési elve

szerkesztés

Az elektrodinamikus mérőműszerekben mindig két vezetőrendszer van: álló, és elmozduló (lengő) tekercs. A mérőműszer az ezekbe vezetett áramok kölcsönhatásával működik. Ha az állótekercsbe I1, és a lengőtekercsbe I2 áramot vezetnek a keletkező elektromágneses erőpár, illetve annak nyomatéka a lengőt, visszatérítő nyomaték ellenében elfordítja. A kitérítő nyomaték nagysága függ a tekercsek gerjesztésének nagyságától. Az elektrodinamikus mérőműszer a mérendő áram jelalakjától függetlenül, annak effektív értékét méri.

A mérőműszer mérési egyenlete egyenáramon

szerkesztés

I1 * I2 * k = visszatérítő nyomaték. (ahol k a mérőműszerre jellemző tapasztalati érték) Másfelől felírva: I1 *n1 *I2 *n2 *k1 = visszatérítő nyomaték. (ahol k1 a mérőműszerre jellemző tapasztalati érték, n1 és n2 a tekercsek menetszáma)

A mérőműszer mérési egyenlete váltakozó áramon

szerkesztés

I1 * I2 * k * cos φ = visszatérítő nyomaték. (ahol k a mérőműszerre jellemző tapasztalati érték) Másfelől felírva: I1 *n1 *I2 *n2 *k1 * cos φ = visszatérítő nyomaték. (ahol k1 a mérőműszerre jellemző tapasztalati érték, n1 és n2 a tekercsek menetszáma, és cosφ = a két áram által bezárt szög (φ) miatt csak az áramnak hasznosuló vektora)

Az elektrodinamikus rendszer háromféle kapcsolásban készülhet

szerkesztés

A mérőműszeren belül az álló és a lengő tekercs lehet:

  1. sorba kapcsolva
  2. párhuzamosan kapcsolva és
  3. egymástól független.

A háromféle kapcsolás háromféle használati lehetőséget jelent, elvileg azonos viselkedéssel. A két első megoldást már teljesen kiszorította a lágyvasas műszer.

Elektrodinamikus wattmérő

szerkesztés

Az álló és lengő tekercs kapcsolása független egymástól az elektrodinamikus wattmérőben. Erre a műszerre is érvényesek a bevezetőben leírt egyenletek. A gyakorlatban a teljesítmény méréséhez az egyik áram helyett feszültséget szeretnénk mérni, így ezt az áramot a feszültséggel tesszük arányossá. (Tkp. az egyik tekercs elé előtét-ellenállást teszünk, melynek értékét úgy változtatjuk meg, hogy a körben akkora áram folyjon, hogy a mérendő teljesítmény pont végkitérést eredményezzen.) I1 * I2 * k * cos φ = visszatérítő nyomaték, mivel I1 = U / (Re+R1 ) (U / (Re+R1 )) * I2 * k * cos φ = visszatérítő nyomaték, másfelől P = U * I * cos φ

Mágneses terek hatása

szerkesztés

A viszonylag kicsi nyomatéki viszonyok miatt a műszerek különösen érzékenyek bármilyen mágneses tér hatására. Árnyékolóbúra nélkül, csak a lengőrészt bekötve a műszer iránytűként beállna a Föld mágneses terének, vagy a zavaró mágneses térnek az irányába. Ugyanezt eredményezheti a mágneses árnyékoláson belül bármilyen kemény mágneses anyag, vagy vasszennyezés is. Az árnyékolóbúra permaloy anyagból készül, és hőkezelés után nem lehet maradó mágnesessége (remanencia). A búra tulajdonságait mechanikus behatás lényegesen ronthatja. A jól elkészített műszernél a fenti szorzat szerint bármely tag változása azonos végkitérés-változást kell, hogy eredményezzen. Így ha bármely tényező nulla, a szorzat eredménye is nulla!

Lengő és állótekercs egymásra hatása

szerkesztés

Váltakozó áramú használatban a lengő-, és állótekercs közötti kölcsönös indukciótényező kölcsönös indukciós, vagy transzformációs hibát okoz. Az átindukálás okozta nyomaték a lengőt az állótekercshez képest merőleges helyzetbe, tereli. A hiba csökkenthető a menetszámok csökkentésével.

  • Karsa Béla: Villamos mérőműszerek és mérések (Műszaki Könyvkiadó. 1962)
  • Tamás László: Analóg műszerek. Jegyzet. (Ganz Műszer Zrt., 2006)

Vonatkozó szabványok

szerkesztés
  • IEC-EN 60051-1-9