A Galilei-transzformáció kapcsolatot létesít két inerciarendszer között, melyek X tengelyei egybeesnek, Y és Z tengelyeik párhuzamosak és egymáshoz képest egyenes vonalú egyenletes mozgást végeznek. A kölcsönös mozgás az X tengely mentén v sebességgel történik. A transzformációval kiszámíthatjuk egy K rendszerben lévő esemény idejét és helyét egy K’ rendszerben is. Tehát ha adva van az x, y, z, t, akkor a Galilei-transzformáció segítségével meghatározhatjuk x’, y’, z’, t’ értékeit is.

Akkor szoktuk használni, ha a fény terjedésének sebességét nem vesszük figyelembe. E transzformációt leginkább a klasszikus mechanikában látni, ahol az idő és a hosszúságok abszolút jellegeit vesszük figyelembe.

A Galilei-transzformációt a Lorentz-transzformációból úgy vezethetjük le, hogy a c -t (azaz a fény sebességét) végtelennek vesszük.

A Galilei-transzformáció egyenleteiSzerkesztés

 
A K és a K' koordinátarendszer. A K' a K x-tengelye mentén +v sebességgel mozog. A koordinátarendszerek a t=t'=0 időpontban egybeestek: közös volt az origójuk. Későbbi t időpontban az O és az O' origók vt távolságra vannak egymástól akkor, amikor a P esemény bekövetkezett.

A klasszikus szemlélet szerint feltételezzük, hogy a térbeli távolságok és az időintervallumok mérése minden inerciarendszerben azonos eredményre vezet. Valójában ezen a feltevésen alapul a newtoni mechanika. Ez a "józan ésszel" összhangban van.

A newtoni mechanika minden inerciarendszerben kielégítő mértékben érvényes (ezt bárki, aki utazott már simán mozgó repülőgépen, tanusíthatja is). Másképpen fogalmazva, nincs mechanikai hatás, amellyel a K-ban, ill. K’-ben lévő megfigyelők el tudnák dönteni, hogy melyik vonatkoztatási rendszer van “igazán nyugalomban” és melyik “mozog igazán”. Ezt a tényt fogalmazza meg Galilei relativitási elve: Newton mechanikájának törvényei minden inercia-rendszerben ugyanolyanok.

Ha ezek a feltevések igazak, akkor hogyan lehet egy eseménynek a K rendszerben és a K' rendszerben mért adatai között kapcsolatot teremteni? Egy P eseményre, egyszerű geometriai megfontolások alapján meg lehet határozni a két adategyüttes közti kapcsolatot. Ezeket a kapcsolatokat Galilei-transzformációnak nevezzük.[1]

   

   

   

   

A transzformációs képleteknek körülbelül olyan szerepük van, mint egy idegen nyelv szótárának. A transzformációk fordítják le az (P) eseménynek az egyik rendszerben (K') megmért adatait (x',y',z',t') ugyanazon eseménynek a másik rendszerben (K) megmért (x,y,z,t) adataira.

JegyzetekSzerkesztés

  1. Útban a modern fizikához 

ForrásokSzerkesztés

  • Albert Einstein - A speciális és általános relativitás elmélete, Gondolat kiadó, 1965
  • Alvin Hudson, Rex Nelson - Útban a modern fizikához, LSI Oktatóközpont, 1994