Második Hardy–Littlewood-sejtés
A matematika, azon belül a számelmélet területén a második Hardy–Littlewood-sejtés az intervallumokban található prímszámok darabszámával foglalkozik. A sejtés szerint
π(x + y) ≤ π(x) + π(y)
minden x, y ≥ 2 értékre, ahol π(x) a prímszámláló függvényt jelöli, ami megadja az x-nél nem nagyobb prímek számát.
Ez azt jelentené, hogy az x + 1 és x + y közötti prímek száma minden esetben kisebb vagy egyenlő mint az 1 és y közötti prímek száma. Ez bizonyítottan inkonzisztens a prím n-esekkel foglalkozó első Hardy–Littlewood-sejtéssel, aminek az első „hibája” valószínűleg csak nagyon nagy x-eknél jelentkezik.[1][2] Például egy 447 prímszámból álló, ún. elfogadható n-es [3] (vagy prímkonstelláció) y = 3159 egész szám intervallumában található meg, míg π(3159) = 446. Ha az első Hardy–Littlewood-sejtés igaznak bizonyul, akkor az első ilyen n-es létezésére olyan x-eknél számítunk, melyek nagyobbak 1,5 × 10174-nél, de kisebbek 2,2 × 101198-nál.[4]
Jegyzetek
szerkesztés- ↑ Hensley, Douglas. „Primes in intervals”. Acta Arith. 25 (1973/74), 375–391. o.
- ↑ Richards, Ian (1974). „On the Incompatibility of Two Conjectures Concerning Primes”. Bull. Amer. Math. Soc. 80, 419–438. o. DOI:10.1090/S0002-9904-1974-13434-8.
- ↑ Prime pages: k-tuple. (Hozzáférés: 2008. augusztus 12.)
- ↑ 447-tuple calculations. (Hozzáférés: 2008. augusztus 12.)
- Engelsma, Thomas J.: k-tuple Permissible Patterns. (Hozzáférés: 2008. augusztus 12.)
- (1923) „On some problems of "partitio numerorum" III: On the expression of a number as a sum of primes”. Acta Math. 44, 1–70. o. DOI:10.1007/BF02403921.
- Oliveira e Silva, Tomás: Admissible prime constellations. (Hozzáférés: 2008. augusztus 12.)