„Modellelmélet” változatai közötti eltérés

[nem ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Emájti (vitalap | szerkesztései)
Emájti (vitalap | szerkesztései)
20. sor:
Egy modell predikátumok interpretálására szolgál. A [[Predikátumkalkulus|predikátumok]] elsőrendű nyelvben vannak értelmezve, ami annyit jelent, hogy egy absztrakciós szinttel felette vannak a nulladrendű formuláknak, azaz lehetséges bennük a kvantifikáció. Ezért bevezetjük az interpretálandó nyelvbe a változók fogalmát. A változók egyik halmaza az individuumváltozók (az U univerzum elemeinek reprezentációi) másik halmaza a nem-logikai változók (ezek a függvényszimbólumok és a relációszimbólumok). Egy elsőrendű nyelvű elmélete azon formulák halmaza, amelyek igazak. A modell ([[struktúra]]) pedig áll egy alaphalmazból és rajta értelmezett függvényszimbólumokból, relációszimbólumokból és konstansokból.
 
Minden elmélet (az elméletek részhalmazai F(t)-nek) [[szemantika|szemantikai]] következményei egy „fi eleme F(t)” formulának akkor és csak akkor, ha a formula levezethető az elméletből. Ha egy elméletből levezethető egy [[LogikaFormális logika|formula]] és annak negáltja is, akkor az elmélet inkonzisztens, azaz ellentmondásos. Ha az elméletben nincs ilyen formula, akkor az elméletnek van modellje, azaz konzisztens. Ha az elmélet minden véges részének van modellje, akkor az elméletnek is van. Az [[Gödel teljességi tétele|igazság tétel]] szerint, ha egy L elsőrendű nyelvben megadott T elméletnek (zárt formulák halmazának) van modellje, akkor konzisztens. Ez nyilvánvaló, hiszen a modellben minden T-ből levezethető állításnak igaznak kell lennie, márpedig a modellen nem teljesülhet egyszerre egy zárt formula és tagadása. A teljességi tétel az igazság tétel megfordítása. Ha tehát egy elsőrendű elméletben egy tetszőleges mondat minden modellben igaz, akkor a formalizált axiomatikus-deduktív elméletek levezethetőség kritériumának megfelel, vagyis bizonyítható. Magasabb rendű vagy végtelen logikák esetében akadály, hogy általában nem teljesek. [[Gödel teljességi tétele]]
Ha egy formulára teljesül az, minden A (modell) eleme K modellosztályra fennáll, hogy ha A modellje a formulának, akkor ez a megállapítás a K modellosztály elmélete. (jele Th(k)). A modellek elméletei formulahalmazok. K akkor modellosztálya E formulahalmaznak, ha minden A-ra fennáll, hogy A modellje az E formuláknak, és A eleme K (jele Mod(E)).
 
Az [[ultraszorzat]] nem más, mint egy [[direktszorzat|direktszorzattal]] kapott I hatványhalmazán végzett szűrés (melynek az üres halmaz nem eleme és nem is üres, ha két halmaz eleme, akkor a metszetük is eleme, illetve ha egy elemének van komplementere, akkor azzal az elemmel és komplementerrel képzett halmaz is eleme) illetve egy kikötés, miszerint minden alaphalmazbeli részhalmaz az eleme (ekkor pontvéges), vagy annak komplementere az eleme. Ekkor az alaphalmaz ultraszorzatáról beszélünk. Ha az ultraszűrő végesmetszet tulajdonságú, akkor létezik egy őt tartalmazó legkisebb szűrő, valamint minden szűrő kiterjed egy ultraszűrővé. A szűréssel [[ekvivalencia]] osztályokat képezünk, ugyanis a szimmetria és a reflexivitás nyilvánvaló, de még a [[Tranzitív reláció|tranzitívitás]] is megvan: kiválasztunk két nyelvet, melyek elemei az ultraszűrőnek, a metszetük is az lesz, és mivel amaz részhalmaza lesz egy olyan kibővített nyelvnek, amiben egy harmadik formula egyenlő az előző két nyelv egy-egy formulájával, ezért a felszálló tulajdonság miatt eleme lesz ez a nyelv is az ultrafilternek. Az ekvivalencia reláció miatt az ultraszorzatok megőrzik az elsőrendű igazságot. Mindez fontos lesz azokban a tételekben, amelyek a reguláris ultraszűrőkön révén elvezetnek a kompaktsági tételhez, mely révén pedig az axiomatizálhatóságról tudunk meg valamit.
 
Két modell elemien ekvivalens, ha a leírás szintjén megkülönböztethetetlenek, azaz ugyanazokat az állításokat teszik igazzá. Ezeknek a modell típusoknak egy részhalmaza az, amikor két struktúra izomorf is; ekkor a két struktúra között van egy [[bijekció]]. Ugyanakkor, ha két végtelen struktúra elemien ekvivalens, akkor nem biztos, hogy izomorfak. Ha ugyanis egy T elméletnek van végtelen modellje, és K az elméletnél nagyobb egyenlő számosság, akkor biztos van K számosságú modellje is, ez Lowenheim-Skolem tétel felszálló ága. Ugyanis a végesmetszet tulajdonságból következik, hogy van egy F ultraszűrő A felett. Mivel F K-reguláris ultraszűrő, ekkor azzal a függvénnyel kapott halmazon, ami a K számosságú indexhalmazt egy tetszőleges A struktúrába képezi elvégezve az F K-reguláris ultraszűrőt egy ultraszorzatot kapunk mely számossága egyenlő lesz azzal, ha csak direktszorzatot végeztünk volna. A Los-lemma miatt a direktszorzat számosságával egyenlő lesz egy az ultraszorzattal kapott struktúrával elemien ekvivalens B struktúra is, aminek lesz pontosan egy X K-számosságú részhalmaza. Ez a Löwenheim-Skolem tétel leszálló ága miatt benne lesz B egy K számosságú elemi részében. Így lesz A-val egy elemien ekvivalens, de vele nem izomorf B struktúra. Azaz egy végtelen struktúrát nem lehet elsőrendben igazságértékeléssel egyértelműen azonosítani.