„Rubik-kocka” változatai közötti eltérés

a
 
A forgatások egymásutánját a megfelelő betűk egymásutánjaként jelölhetjük, és a szorzás művelet analógiájára használjuk. Például azt, hogy „először kétszer a jobb oldali lapot forgatom el, majd a fölsőt, végül a hátulsót” úgy jelölhetjük, hogy ''jjfh'', vagy ''j·j·f·h'', azaz ''j²fh''. Ha ''1''-gyel jelöljük azt, hogy semmilyen forgatást nem végzünk, akkor észrevehetjük, hogy
''aaaa'' = ''a·a·a·a'' = ''a<sup>4</sup>'' = ''1'', ''ffff'' = ''f·f·f·f'' = ''f<sup>4</sup>'' = ''1'', stb. Persze az ''1'' is transzformáció, csak éppen minden pozíciót helybenhagy: ''1''(1)=1, ''1''(2)=2, … , ''1''(43&nbsp;252&nbsp;003&nbsp;274&nbsp;489&nbsp;856&nbsp;000) = 43&nbsp;252&nbsp;003&nbsp;274&nbsp;489&nbsp;856&nbsp;000. Így már értelmezhetjük az óramutatóval szemben történő forgatást is, amely megfelel három darab óramutató járásával megegyező forgatás egymásutánjának. Tehát például ''aaa'' = ''a³'' egy ilyen forgatás, amit az előzek értelmében a ''1''/''a''-nak vagy ''a<sup>−1</sup>''-nak is jelölhetünk, hiszen az ''1''/''a'' · ''a'' = ''1'' képlet azt írja le, hogy a kocka fölső lapjának a középpontból kifelé mutató tengely körüli 90°-os óramutató forgásának irányával szemben, majd azzal megegyezően történő elforgatása a kocka elrendezését nem változatja meg. Sőt azt is mondhatjuk, hogy ''a<sup>0</sup>'' = ''1'', ''f<sup>0</sup>'' = ''1'' stb., vagyis 0-szor elvégezve a valamelyik forgatási műveletet nem változik meg a kocka.
 
Képezzünk az összes lehetséges forgatásból egy halmazt, amit jelöljünk ''A''-val! Ha még ezen a halmazon a szorzással jelölt ''egymás után elvégzés'' [[művelet]]ét is értelmezzük (ami másként a forgatási függvények kompozíciója), akkor egy [[csoport]]ot kapunk jele: (''A'', · ). Megállapíthatjuk, hogy ezen halmaz véges elemszámú (azaz véges sok különböző forgatás képzelhető el), tehát a csoport véges elemszámú, ugyanis végtelen sok különböző forgatás végtelen sokféleképpen tudná a kockát elrendezni, de a 9x6 lapocska mindegyike legfeljebb 6 színt vehet fel, tehát a kocka biztosan kevesebb állapottal rendelkezik, mint 36<sup>6</sup>, vagyis beláttuk, hogy csak véges sok különböző forgatás képzelhető el.
46

szerkesztés