„Erdős–Kac-tétel” változatai közötti eltérés

Elírás javítása
(Elírás javítása)
Címkék: Mobilról szerkesztett Mobil web szerkesztés
Az '''Erdős–Kac-tétel''' a [[valószínűségszámítás]] és a [[számelmélet]] területén azt állítja, hogy ha ω(''n'') egy ''n'' szám egymástól különböző [[prímtényező]]inek száma, akkorés, a:ha az ''n'' számot ''1'' és ''N '' között egyenlő eséllyel sorsoljuk ki
: <math> \frac{\omega(n) - \log\log nN}{\sqrt{\log\log nN}} </math>
[[valószínűség-eloszlás]] standard [[normális eloszlás]]t mutat, amennyiben ''N'' elég nagy.<ref>http://www.dms.umontreal.ca/~andrew/PDF/ErdosKac.pdf</ref>
 
Ez a tétel a [[Hardy–Ramanujan-tétel]] kiterjesztése, mely azt állítja, hogy ω(''n'') átlagértéke log log ''n'', a hiba jellemző értéke <math>\sqrt{\log\log n}</math>.
293

szerkesztés