Fejszámolási módszerek
A fejszámolás szó szerint értendő fogalom, jelentése fejben számolni. Az alábbi cikkben különböző hasznos és érdekes trükkök találhatók, melyek által nem csak leegyszerűsíthetjük a fejben való számításainkat, hanem biztos tudásra is szert tehetünk vele. Hogyan kell két-háromjegyű számokat fejben négyzetre, köbre emelni? Háromjegyű számokat összeszorozni, osztani és gyököt vonni belőlük?
Mindenki képes rá, hiszen a fejszámolás nem veleszületett képesség. Mindenki képes határok nélkül fejleszteni a memóriáját, logikáját és matematikai készségét. Egy idő után a sok gyakorlás miatt az ember képes ráérezni egyre gyorsabban a matematikai műveletek könnyebb útjára, így egyre gyorsabban jut majd el majd a végeredményhez is.
- „A fejszámolás titkainak értékéből nem von le az, ha tudják, hogyan működik. Mikor a számtan megy, akkor nem akadunk el magával a számolással, és a számok csodálatos természetére. A fejszámolás elsajátításával a racionális számok olyan gyorsan eszedbe jutnak majd, hogy a fejedben kicsit több hely marad azon gondolkodni, miért működik így a világ, és rájössz arra, hogy a természetben mindennek megvan a végeredménye'” – Bill Nye
Szorzás 11-gyel
szerkesztésKétjegyű számok szorzása
szerkesztésKönnyen észrevehető egy érdekes szabályosság kétjegyű számok és 11 szorzása esetén. Főleg, ha nincs benne 10-es átlépés. Nézzük meg egy példán, miről is van szó:
A szabály, hogy adjuk össze a szám számjegyeit, és írjuk be a két szám közé.
Az eredmény 594, mert
A következő, a tízes átlépés. Mi történik a következő szorzásnál?
Ugyanúgy összeadjuk a számjegyeket.
Mivel tízes átlépés történt, az 1-et hozzáadjuk a szám első jegyéhez, és a 3-ast pedig beírjuk a két szám közé, ahogy eddig csináltuk. Tehát a szorzás így néz ki:
Háromjegyű számok szorzása
szerkesztésHa háromjegyű számot szorzunk 11-gyel, össze kell adni az első és a középső számjegyet, a középső és az utolsó számjegyet, majd be kell írni őket az első és az utolsó számjegy közé. Például:
Ha tízes átlépés történik:
Ugyanúgy összeadjuk a számjegyeket, mint az előző példában.
- és
Először 1-et hozzáadunk a 9-hez az első tízes átlépés miatt és leírjuk mellé a 7-est. Ezután nézzük a 15-öt. Mivel itt is tízes átlépés van, 1-et hozzá kell adnunk az előző számjegyhez, a 7-hez, utána pedig leírhatjuk az 5-öst, majd végére a 7-est.
Természetesen a módszer többjegyű számokra is működik.
A módszer helyessége azonossággal belátható:
Ha , akkor
Négyzetre emelés
szerkesztés5-re végződő számok
szerkesztésAmikor egy szám 5-ösre végződik, akkor egy egyszerű szabály alapján rögtön kiszámolhatjuk a négyzetét. Vegyünk egy kétjegyű számot:
Vegyük az első számjegyet, szorozzuk meg a nála 1-gyel nagyobb számmal, majd írjuk oda a végére a 25-öt.
A 100-zal való szorzás csak formailag szükséges, mert a 72 két helyiértékkel előrébb van mint a 25.
A tétel könnyen bizonyítható:
Ha , akkor
Egy különleges eset
szerkesztésTegyük fel, hogy két olyan kétjegyű számot szorzunk össze, melyeknek első számjegye megegyezik, második számjegyeik összege pedig 10. Ilyenkor az első számjegyet megszorozzuk a nála 1-gyel nagyobb számmal, ezt leírjuk, majd a végére az egyes helyiértékeken álló számjegyek szorzatát tesszük.
A módszer helyessége azonossággal belátható:
Ha , akkor
Négyzetre emelés általánosan
szerkesztésVegyünk egy kétjegyű számot. Legyen ez a 67. A 67-et kerekítjük tízes helyiértékre, így lesz belőle 70. Mivel 3-mal tértünk el, ezért a 67-ből levonjuk a 3-at. Így kaptunk két számot: A 70-et és a 64-et. Szorozzuk össze őket és adjuk hozzá az eredeti szám és a kerekített szám különbségének négyzetét.
A magyarázat a következő algebrai összefüggés:
Összeadás
szerkesztésKétjegyű számok
szerkesztésHárom- és többjegyű számok
szerkesztésKivonós módszer
szerkesztésKivonás
szerkesztésKétjegyű számok
szerkesztésHárom- és többjegyű számok
szerkesztésKomplementerek
szerkesztésSzorzás
szerkesztésEgyjegyű számok szorzása többjegyűvel
szerkesztésTöbbjegyű számok szorzása többjegyűvel
szerkesztésKomplementerek használata
szerkesztésOsztás
szerkesztésGyökvonás
szerkesztésÉrdekességek
szerkesztésKamatos kamat, adójárulék stb.
szerkesztésA fejszámolás története
szerkesztésFejszámoló művészek
szerkesztésLásd még
szerkesztésIrodalomjegyzék
szerkesztés- Arthur Benjamin & Michael Shermer: Fejszámolás, Partvonal Kiadó, 2006
Külső hivatkozások
szerkesztés- Arthur Benjamin: A performance of “Mathemagic” – egy fejszámoló művész előadása videón (magyar felirat elérhető); módszerét 11:48 körül kezdi el ismertetni, majd bemutatni egy ötjegyű szám négyzetre emelésével