Főmenü megnyitása

Mértani és harmonikus közép közötti egyenlőtlenség

A mértani és harmonikus közép közötti egyenlőtlenség egy matematikai tétel, ami szerint ha pozitív valós számok, akkor

teljesül, tehát n szám mértani közepe legalább akkora, mint a harmonikus közepe. Egyenlőség csak akkor van, ha .

BizonyításaSzerkesztés

Legyenek   pozitív valós számok. Alkalmazzuk a számtani és mértani közép közötti egyenlőtlenséget a szintén pozitív valós   számokra:

 

Felhasználva a gyökvonás azonosságait:

 

Átszorozva készen is vagyunk:

 

Az egyenlőtlenség iránya nem változott, hiszen csupa pozitív szám szerepelt. Egyenlőség csak   számokra, azaz   esetén teljesül (ez a számtani és mértani közép közötti egyenlőtlenségből adódik).