A negáció olyan logikai művelet, amely egy állítás igazságértékét az ellenkezőjére váltja. George Boole angol matematikus vezette be a kijelentések szerkezetének szimbólumokkal és műveletekkel való leírását. A negáció jelei a ~, ¬, J, lengyel jelölésben N. Charles S. Peirce egzisztenciagráfjában a tagadott állítást zárt élsorozat veszi körül.

A negáció esetében, eltérően a többi logikai művelettől, nem egy, a szó szoros értelmében vett kötőszóval van dolgunk. A negáció nem két elemi kijelentést kapcsol össze, hanem csak egyet. Ha A elemi kijelentés elé tesszük a ~ jelet, akkor egy összetett kijelentést kapunk, amit úgy lehet kiolvasni, hogy „nem A” vagy „nem igaz, hogy A”. A negáció az ellenkezőjére változtatja az igazságértéket, tehát az összetett mondat igazságértéke ellenkezője lesz az elemi mondat igazságértékének. Ha A igaz, akkor nem A hamis, és ha A hamis, akkor nem A igaz. A kettős negáció pedig visszaállítja az eredeti igazságértéket (kettős tagadás törvénye). Egy állítás és tagadása nem lehet egyszerre igaz (ellentmondásmentesség elve). Egy állítás és tagadása nem lehet egyszerre hamis (kizárt harmadik elve)

Teljesen mindegy, mi A értelme, mivel a ~ jel a mondat igazságértékére hat, nem az értelmére. Például:

A: Esik az eső.

~A: Nem esik az eső.

A logikai műveleteket igazságtáblázattal is megadhatjuk. A negáció igazságtáblázata a következő:

A ~A
I H
H I

A tagadás kifejezhető más műveletekkel:

  • implikációval: akkor igaz, ha p hamis, és akkor hamis, ha p igaz;
  • a NAND és a NOR Sheffer-operátorokkal: a p NOR p illetve a p NAND p ellenkezőjére változtatják a p igazságtartalmát.

A klasszikus logikában a tagadásnak többek között a következőek a tulajdonságai:

  • Involúció, azaz a kettős tagadás állítás: és igazságértéke ugyanaz. (kettős tagadás elve)
  • Egy alakú kifejezés azonosan igaz (kizárt harmadik elve)
  • Egy alakú kifejezés azonosan hamis (ellentmondás elve)

A háromértékű logikában két tagadás van: a gyenge és az erős. A kettő abban különbözik, hogy az erős tagadás megőrzi a preszuppozíciókat.

A tagadószó megjelenése azonban nem feltétlenül jelent negációt. A természetes nyelv „nem” szava ennél sokoldalúbb:

Béla nem ment el színházba.

Nem Béla ment el színházba.

Béla nem színházba ment el.

A logikai „tagadás” mindig kijelentésekre érvényes. A nyelvészetben a tagadást kifejezheti elutasítás, vagy valaminek a megszüntetése is.

Frege szerint nem kell különbséget tenni állító és tagadó kijelentéseket megkülönböztetni, mivel a tagadás nem az illokúciós erőhöz, hanem a gondolathoz tartozik.[1] Minden gondolathoz tartozik egy neki ellentmondó gondolat.[2]

JegyzetekSzerkesztés

  1. Frege, Gottlob: Die Verneinung: eine logische Untersuchung. In: Beiträge zur Philosophie des deutschen Idealismus I. 3/4 (1919), S. 143. In: Frege, Logische Untersuchungen, 3. Auflage. (1986) - ISBN 3-525-33518-0, S. 54 ff.
  2. Frege, Gottlob: Die Verneinung: eine logische Untersuchung. In: Beiträge zur Philosophie des deutschen Idealismus I. 3/4 (1919), S. 143. In: Frege: Logische Untersuchungen. 3. Auflage. 1986, ISBN 3-525-33518-0, S. 54(67).

ForrásokSzerkesztés

  • Margitay Tihamér: Az érvelés mestersége: érvelések elemzése, értékelése és kritikája, Typotex, Bp., 2007
  • Zemplén Gábor-Kutrovátz Gábor: Érvelés-tanulmányok, BME FiTuTö, 2012