Főmenü megnyitása
146, oktaéder formába pakolt mágneses golyóbis

A számelméletben az oktaéderszámok olyan poliéderszámok, illetve figurális számok, melyek a sűrűn pakolt gömbökből összeálló oktaéderekben részt vevő gömbök számát reprezentálják. Az n-edik oktaéderszám a következő képlettel állítható elő:[1]

Az első néhány oktaéderszám:

1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891 (A005900 sorozat az OEIS-ben).

Tulajdonságai, alkalmazásaiSzerkesztés

Az oktaéderszámok generátorfüggvénye:

 

Sir Frederick Pollock (wd) 1850-es sejtése szerint bármely szám felírható legfeljebb 7 oktaéderszám összegeként.[2]

Kapcsolat más figurális számokkalSzerkesztés

Négyzetes piramisszámokSzerkesztés

 
Négyzetes piramisok, melyek minden rétege középpontos négyzetszámú kockából áll. Mindegyik piramisban a kockák teljes száma oktahedrális számot ad.

A gömbök oktaéderes pakolása felosztható két négyzetes piramissá, az egyik fejjel lefelé a másik alatt, négyzet keresztmetszettel elválasztva. Ezért az n-edik oktaéderszám   megkapható két egymást követő négyzetes piramisszám összeadásával:[1]

 

TetraéderszámokSzerkesztés

Ha   az n-edik oktaéderszám és   az n-edik tetraéderszám, akkor

 

Ez azt a matematikai tényt fejezi ki, hogy egy oktaéder négy, nem egymás melletti lapjához tetraédert ragasztva kétszeres méretű tetraédert kapunk. Egy másik lehetőség, hogy egy oktaéder felosztható négy tetraéderre oly módon, hogy mindegyiknek két összeérő lapja van:

 

Középpontos négyzetszámokSzerkesztés

Két egymást követő oktaéderszám különbsége középpontos négyzetszám:[1]

 

Ezért az oktaéderszámok kifejezik a középpontos négyzetek egymásra helyezésével kapott négyzetes piramis pontjainak számát is; ami miatt 1575-ös könyvében, az Arithmeticorum libri duo-ban Francesco Maurolico "pyramides quadratae secundae"-nek nevezte ezeket a számokat.[3]

Kapcsolódó szócikkekSzerkesztés

FordításSzerkesztés

  • Ez a szócikk részben vagy egészben az Octahedral number című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel.

JegyzetekSzerkesztés

  1. a b c Conway, John Horton & Guy, Richard K. (1996), The Book of Numbers, Springer-Verlag, p. 50, ISBN 978-0-387-97993-9.
  2. Dickson, L. E. (2005), Diophantine Analysis, vol. 2, History of the Theory of Numbers, New York: Dover, pp. 22–23, <https://books.google.com/books?id=eNjKEBLt_tQC&pg=PA22>.
  3. Tables of integer sequences Archiválva 2012. szeptember 7-i dátummal az Archive.is-en from Arithmeticorum libri duo, retrieved 2011-04-07.

További információkSzerkesztés