A szabály a következő: vesszük a főátlóbeli elemek szorzatát, majd hozzáadjuk az első oszlop legalsó elemének, az első sor második elemének, valamint a harmadik oszlop második elemének szorzatát, illetve a kapott eredményhez ismét hozzáadjuk az eddig kimaradt elemek szorzatát. Ebből az eredményből eztán kivonjuk a mellékátló elemeinek szorzatát, majd az első sor első elemének, a második sor utolsó elemének, illetve a harmadik sor középső (második) elemének a szorzatát, valamint a fennmaradó három elem szorzatát. A kapott eredmény a determináns értéke.
Most az M első sorára alkalmazzuk a kifejtési tételt, majd háromszor is felhasználjuk a 2×2-es mátrix determinánsának kiszámolási szabályát, utolsó lépésben pedig a kapott összeget átrendezzük:
Ez a matematikai tárgyú lap egyelőre csonk (erősen hiányos). Segíts te is, hogy igazi szócikk lehessen belőle!