„Lézerradar” változatai közötti eltérés

[nem ellenőrzött változat][nem ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Nincs szerkesztési összefoglaló
Nincs szerkesztési összefoglaló
8. sor:
:==Használata==
Az eljárás nem-fémes tárgyak, kémiai összetevők, [[aeroszol]], [[felhő]]k, sőt egyetlen [[molekula]] vizsgálatára is alkalmas.
 
Downward-looking LIDAR instruments fitted to [[aircraft]] and [[satellite]]s are used for [[surveying]] and mapping – a recent example being the NASA Experimental Advanced Research Lidar.<ref>[http://inst.wff.nasa.gov/eaarl/A 'Experimental Advanced Research Lidar', lidar''NASA.org'']. Retrievedtechnológiát 8 August 2007.</ref> In addition LIDAR has been identified bya [[NASA]] as a key technology for enabling autonomous precision safe landingkulcsfontosságúnak oftartja futureaz roboticautomata andés crewedemberes lunarleszálláshoz landingmás vehicleségitesteken.<ref>{{cite web|last=Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.|title=Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies|url=http://ntrs.nasa.gov/search.jsp?R=20110012163|work=Langel Research Center|publisher=NASA|accessdate=May 24, 2011}}</ref>
 
 
Downward-looking LIDAR instruments fitted to [[aircraft]] and [[satellite]]s are used for [[surveying]] and mapping – a recent example being the NASA Experimental Advanced Research Lidar.<ref>[http://inst.wff.nasa.gov/eaarl/ 'Experimental Advanced Research Lidar', ''NASA.org'']. Retrieved 8 August 2007.</ref> In addition LIDAR has been identified by [[NASA]] as a key technology for enabling autonomous precision safe landing of future robotic and crewed lunar landing vehicles.<ref>{{cite web|last=Amzajerdian, Farzin; Pierrottet, Diego F.; Petway, Larry B.; Hines, Glenn D.; Roback, Vincent E.|title=Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies|url=http://ntrs.nasa.gov/search.jsp?R=20110012163|work=Langel Research Center|publisher=NASA|accessdate=May 24, 2011}}</ref>
 
Wavelengths in a range from about 10 [[micrometer (unit)|micrometer]]s to the [[Ultraviolet|UV]] (ca. 250 [[nanometer|nm]]) are used to suit the target. Typically light is reflected via [[backscatter]]ing. Different types of scattering are used for different LIDAR applications; most common are [[Rayleigh scattering]], [[Mie scattering]] and [[Raman scattering]], as well as [[fluorescence]]. Based on different kinds of backscattering, the LIDAR can be accordingly called Rayleigh LiDAR, Mie LiDAR, Raman LiDAR and Na/Fe/K Fluorescence LIDAR and so on. Suitable combinations of wavelengths can allow for remote mapping of atmospheric contents by looking for wavelength-dependent changes in the intensity of the returned signal.