Főmenü megnyitása

Módosítások

a
→‎Története: Helyesírási jav.
A szerencsejátékok elmélete később biztosítási, népesedési és sztochasztikus (véletlen) geometriai problémákkal (céllövészet elmélete) bővült. A fontosabb matematikusok, akik ilyen problémákkal foglalkoztak (és nevükkel például tételek nevében is találkozhatunk): [[Abraham de Moivre|Moivre]], [[Adrien-Marie Legendre|Legendre]], [[Thomas Bayes|Bayes]] (ld. [[Bayes-tétel|Bayes tétele]]), [[Siméon Denis Poisson|Poisson]], [[Carl Friedrich Gauss|Gauss]], [[Georges-Louis Leclerc de Buffon|Buffon]] (lásd [[geometriai valószínűség]]). A [[XIX. század]]ban a valószínűségszámítás a matematika önmagában is hatalmas, önálló ágává vált. [[Pierre-Simon de Laplace]] ([[1749]]–[[1827]]) [[1812]]-ben megjelent ''Théorie analitique des probabilités'' (''A valószínűségek analitikai elmélete'') című könyve nemcsak összefoglalója ennek az elméletnek, de sokáig fejlődésének egyik motorja.
 
A „modern kori” ([[19. század]] második-, [[20. század]] első fele) valószínűségszámítást az „orosz iskola” vitte tovább, köztük a legismertebbek [[Pafnutyij Lvovics Csebisev|Csebisev]], [[Andrej Andrejevics Markov|Markov]] és [[Alekszandr Mihajlovics Ljapunov|Ljapunov]]. Az elmélet axiomatikus megalapozását a moszkvai [[Andrej Nyikolajevics Kolmogorov|Kolmogorov]] végezte el [[1933]]-ban (lásd [[Kolmogorov-axiómák]]). Ezzel a valószínűségszámítás a modern matematika többi ágával egyenrangú formális elméletté vált. Kolmogorovtól ered a „valószínűségi mező” fogalma: ez egy eseményhalmaznak (eseménytérnek) és egy „valószínűség-kiszámítási módnak” (ez valamilyen nemnegatív valós szám értékű függvény) a párosa. Ez a fogalom már a posztmodern, struktúra- és modellelméleti szemléletű matematika terméke.
 
A valószínűség-számítás nemcsak megalapozódott a huszadik században, hanem folyamatosan olyan területekkel bővült, mint egy részecske bolyongásának leírása többdimenziós euklideszi térben (lásd [[Brown-mozgás]], [[Wiener-folyamat]]). A huszadik század második felében született meg önálló tudományként műszaki, mérnöki és statisztikai problémák termékeként a valószínűség-számítás két fontos új ága: a [[folyamatstatisztika]], illetve az [[információelmélet]]. De nemcsak a „kívülről jött”, például [[fizika]]i eredetű problémákkal gazdagodott, mint a bolyongások; hanem alkalmazást nyert másféle ágakkal foglalkozó matematikusok körében is; így manapság olyan „furcsa” gondolatokkal találkozhatunk, hogy számelméleti problémákat valószínűségszámítási alapon is lehet vizsgálni.
10 420

szerkesztés