„Lineáris leképezés” változatai közötti eltérés

a lineáris leképezést nevezhetjük lineáris transzformációnak is
(RV: képlet ott van egy szakasszal lejjebb, a bevezetőben csak szóbeli definíció szokásos)
(a lineáris leképezést nevezhetjük lineáris transzformációnak is)
Egy '''lineáris leképezés''' (vagy '''lineáris operátor''' vagy '''lineáris transzformáció''') a [[matematika|matematikában]], közelebbről a [[lineáris algebra|lineáris algebrában]], egy azonos [[test (algebra)|test]] feletti [[vektortér|vektorterek]] között ható [[művelet]]tartó [[függvény (matematika)|függvény]] (szakszóval, vektortér-[[homomorfizmus]]). Egy operátor bemenete tehát vektor, kimenete pedig szintén vektor, az úgy nevezett képvektor. Lineáris tehát egy ilyen vektorhoz vektort rendelő leképezés, ha
* két vektor összegének képe a két vektor képének összege, és
* egy vektor számszorosának képe a vektor képének ugyanezen számszorosa.
Névtelen felhasználó