A termodinamika vagy magyar nevén hőtan a fizika energiaátalakulásokkal foglalkozó tudományterülete.

Egy magára hagyott termodinamikai rendszerben az intenzív állapotjelzők eloszlása homogénné válik, vagyis a rendszer egyensúlyi állapotba kerül. Az egyensúlyi állapottal a termosztatika foglalkozik. Minden pontjában ugyanakkora nyomás, hőmérséklet stb. lesz. Termodinamikai elveken (is) alapszik pl.: időjárás-előrejelzés, robbanómotorok, repülőgép-hajtóművek, hűtőszekrény, kuktafazék, kémény. Néhány fogalom, mely kapcsolódik a termodinamikához:

Klasszikus termodinamika szerkesztés

0. főtétel: a termodinamikai rendszer egyensúlya szerkesztés

A nulladik főtétel tulajdonképpen nem egyetlen „törvényt”, hanem több posztulátumot jelent, amelyek a termodinamikai rendszer egyensúlyával kapcsolatosak. Ezek:

  • bármely magára hagyott termodinamikai rendszer egy idő után egyensúlyi állapotba kerül, amelyből önmagától nem mozdulhat ki;
  • egy egyensúlyban levő termodinamikai rendszer szabadságfokainak száma a környezetével megvalósítható kölcsönhatások számával egyenlő;
  • a két testből álló magára hagyott termodinamikai rendszer egyensúlyban van, ha a testek között fellépő kölcsönhatásokat jellemző intenzív állapothatározóik egyenlők;
  • az egyensúly tranzitív (ha A rendszer termodinamikai egyensúlyban van C rendszerrel és B rendszer is termodinamikai egyensúlyban van C rendszerrel, akkor ebből következik, hogy A és B rendszer is termodinamikai egyensúlyban van egymással).

I. főtétel: az energiamegmaradás törvénye szerkesztés

A termodinamika első főtétele mennyiségi összefüggést állapít meg a mechanikai munka, a cserélt hő és a belső energia változása között. Egy nyugvó és zárt termodinamikai rendszer belső energiáját, amennyiben annak belsejében nem zajlik le fázisátalakulás vagy kémiai reakció, kétféleképpen lehet megváltoztatni: munkavégzéssel és hőközléssel. A rendszer belső energiájának megváltozása ΔU tehát a vele közölt Q hőmennyiség és a rajta végzett W (bármilyen) munka összege:

 

Áramló közegre a hő és a technikai munka összege így számolható:

 

ahol q a hő, wt12 a technikai munka, h az entalpia, c a közegáramlás sebessége, g a gravitációs állandó és z a vizsgált pont magassága (helyzete). Differenciális alakban:

 

Következménye: Nincs olyan periodikusan működő gép, ú.n. elsőfajú perpetuum mobile, mely hőfelvétel nélkül képes lenne munkát végezni.

II. főtétel szerkesztés

A második főtétel a spontán folyamatok irányát szabja meg. Több, látszólag lényegesen különböző megfogalmazása van.

  • Clausius-féle megfogalmazás (1850): A természetben nincs olyan folyamat, amelyben a hő önként, külső munkavégzés nélkül hidegebb testről melegebbre menne át. Csakis fordított irányú folyamatok lehetségesek.
  • Kelvin-Planck-féle megfogalmazás (1851, 1903): A természetben nincs olyan folyamat, amelynek során egy test hőt veszít, és ez a hő munkává alakulna át. Szemléletesen egy hajó lehetne ilyen, amelyik a tenger vizéből hőenergiát von el, és a kivont hőenergiával hajtja magát. Ez nem mond ellent az energiamegmaradásnak, mégsem kivitelezhető.

Az ilyen gépet másodfajú perpetuum mobilének nevezzük, tehát az állítás szerint nem létezik másodfajú perpetuum mobile.

A két megfogalmazás egymásból következik, de a levezetése nem teljesen egyszerű.

A második alaptörvénynek ezek és az ezekhez hasonló megfogalmazásai zavarbaejtőek, hiszen a fizika többi, összefüggéseket megállapító törvényeivel szemben valaminek a létezését tagadják. Egy jobb megfogalmazás végett egy új fogalom került bevezetésre: az entrópia. A termodinamika második alaptörvénye az entrópia felhasználásával a következőképpen fogalmazható meg: a magukra hagyott rendszerek entrópiája spontán folyamatokkal nem csökkenhet.

III. főtétel szerkesztés

Nernst megfogalmazása szerint az abszolút tiszta kristályos anyagok entrópiája nulla kelvin hőmérsékleten zérus.

Források szerkesztés

További információk szerkesztés