Degenerált eloszlás
A degenerált eloszlás vagy elfajult eloszlás egy valószínűség eloszlás, ahol a valószínűségi változó csak egy értéket vehet fel. Például, ezt az eloszlást mutatja egy pénzérme, melynek mindkét oldala azonos, vagy egy kocka, ahol szintén azonos minden oldal. Miközben ez az eloszlás nem tekinthető véletlenszerűnek a mindennapi értelemben, kielégíti a valószínűségi változó definícióját.
A nem elfajult eloszlásokat és a nem elfajult eloszlásokat követő valószínűségi változókat nevezzük valódi eloszlásoknak, és valódi (eloszlást követő) valószínűségi változóknak. Ebből látható, hogy a valószínűségi eloszlások egy osztályozását adja a valódi-elfajult felosztás.
A degenerált eloszlás a valós síkon egy pontra lokalizált, k0.
A valószínűség tömeg függvénye:
Konstans valószínűségi változó
szerkesztésA valószínűségszámítás elméletben, egy konstans valószínűségi változó egy olyan diszkrét valószínűségi változó, melynek állandó értéke van, bármely eseménytől függetlenül. Ez technikailag különbözik attól, amikor egy valószínűségi változó ‘majdnem biztosan’ állandó, de felvehet más értéket is, de csak olyan esetben, aminek zéró a valószínűsége.
Legyen X: Ω → R egy valószínűségi változó a (Ω, P) valószínűségi tartományban. Ekkor X egy 'majdnem biztosan konstans' valószínűségi változó, ha létezik, és így
és továbbá egy konstans valószínűségi változó, ha
Megjegyezzük, hogy ha egy konstans valószínűségi változó majdnem biztosan konstans, az fordítva nem szükségszerű, mivel ha X majdnem biztosan konstans, akkor létezhet γ ∈ Ω úgy, hogy X(γ) ≠ c (de ekkor szükségszerűen Pr({γ}) = 0, Pr(X ≠ c) = 0).
Gyakorlati szempontból a különbség az, hogy ha X konstans, vagy majdnem biztosan konstans, nem lényeges, mivel a valószínűség tömeg függvény f(x), és a kumulatív eloszlásfüggvény F(x) nem függ attól, hogy X konstans, vagy majdnem biztosan konstans. Mindkét esetben:
és
Az F(x) a lépcsőfüggvény; ez különben a Heaviside lépcsőfüggvény eltolása.
Kapcsolódó szócikkek
szerkesztésIrodalom
szerkesztés- Horváth Gézáné: Kvantitatív módszerek I. Fejezetek a valószínűségszámításból. (hely nélkül): PERFEKT ZRT. 2005. ISBN 9789633945902
- Simonovits András: Válogatott fejezetek a matematika történetéből. (hely nélkül): Typotex Kiadó. 2009. 109–113. o. ISBN 978-963-279-026-8
- Pierre-Simon de Laplace. Analytical Theory of Probability (1812)
- Andrej Nyikolajevics Kolmogorov. Foundations of the Theory of Probability (1950)
- Patrick Billingsley. Probability and Measure. New York, Toronto, London: John Wiley and Sons (1979)
- Olav Kallenberg; Foundations of Modern Probability, 2nd ed. Springer Series in Statistics. (2002). 650 pp. ISBN 0-387-95313-2
- Henk Tijms. Understanding Probability. Cambridge Univ. Press (2004)
- Olav Kallenberg; Probabilistic Symmetries and Invariance Principles. Springer-Verlag, New York (2005). 510 pp. ISBN 0-387-25115-4
- Gut, Allan. Probability: A Graduate Course. Springer-Verlag (2005). ISBN 0387228330
Források
szerkesztés- Proofwiki
- Enciklopedia of Math
- Bognár J.-né – Mogyoródi J. – Prékopa A. – Rényi A. – Szász D. (2001): Valószínűségszámítási feladatgyűjtemény. Typotex Kiadó, Budapest.