„Tehetetlenség (mechanika)” változatai közötti eltérés

[ellenőrzött változat][ellenőrzött változat]
Tartalom törölve Tartalom hozzáadva
Nincs szerkesztési összefoglaló
a Kurzív tartalmú zárójelek korr., ld.: WP:BÜ
99. sor:
A '''gravitációs tömegmérés''' során egy ismeretlen tömegre ható gravitációs erőt hasonlítunk össze egy ismert tömegre ható gravitációs erő nagyságával. Ez tipikusan különféle kiegyensúlyozással történik. A módszer nagyszerűsége abban rejlik, hogy a két tömeg mindenütt kiegyensúlyozódik, mivel a [[Erőtér|gravitációs erőtér]] számukra azonos, annak térerősségétől függetlenül. Tehát amennyiben van gravitációs erőtér az ilyenfajta tömegmérés működik. A módszer viszont csődöt mond olyan szuper nagy tömegű testek közelében, mint [[fekete lyuk]]ak, [[neutroncsillagok]], ahol a gravitációs térerősség a távolsággal hirtelen változik (a mérleg két serpenyője közti kis távolságon is számít a térerősséggradiens, vagyis azonos tömegek esetén különböző nagyságú [[nehézségi erő]]k hatnak a két karra), illetve súlytalan közegben, ahol mindegy milyen testeket hasonlítunk össze, azok folyamatosan egyensúlyban lesznek(nem hat erő a mérleg karjaira).
 
A '''tehetetlenségi tömeget''' úgy határozzák meg, hogy ismeretlen tömegű testre ismert nagyságú erőket alkalmaznak és megmérik a test gyorsulását. Innen a tömeget Newton második törvényének felhasználásával kapjuk meg (''(m=F/a)''). Ez pontos tömegértéket ad, figyelembe véve a mérőműszerek pontosságát. Ha az űrhajósok testtömegüket súlytalan állapotban akarják megmérni, akkor a tulajdonképpeni tehetetlenségi tömegüket mérik meg egy speciális székben (body mass measurement device– BMMD).
 
Az érdekesség az, hogy eddig nem találtak fizikai különbséget a két tömeg között. Számtalan kísérletet végeztek, hogy leellenőrizzék az értékeket, viszont a különbség mindig a kísérletben megengedett hibahatáron belül volt. Einstein általános relativitáselméletének egyik posztulátuma szerint a tehetetlenségi és a gravitációs tömeg azonos, illetve a gravitációs gyorsulás egy „spirális lejtő” a téridő szerkezetében, melyen keresztül a testek „leesnek”. [[Dennis Sciama]] később kimutatta, hogy a visszaható erő, amely az [[univerzum]] teljes tömege részéről hat egy gyorsuló testre, számszerűleg egyenlő a test tehetetlenségével. Ez azonban akkor lenne helytálló fizikai magyarázat, ha valamilyen módon a gravitációs hatások egyszerre lépnének fel.