Whitney-esernyő

egy önmagát metsző, háromdimenziós matematikai felület
(Whitney esernyője szócikkből átirányítva)
Ez a közzétett változat, ellenőrizve: 2023. április 22.

A matematikában a Whitney-esernyő (vagy Whitney esernyője, esetleg Cayley-esernyő) egy önmagát metsző, háromdimenziós felület. Nevét Hassler Whitney amerikai matematikusról kapta. Azok az egyenesek alkotják, amik egy adott parabolán, tehát a vezérgörbén keresztülmennek, egy adott vezéregyenesre merőlegesek, a parabola tengelyével párhuzamosak és annak merőleges felező síkján, az iránysíkon fekszenek.

A felület egy része

A Whitney-esernyő megadható Descartes-féle koordináta-rendszerben paraméteres egyenletrendszer segítségével:

 ;  ;  , ahol az u és v valós számok. Megadható implicit módon is:

 .

Ez a képlet tartalmazza a negatív z tengelyt is (amit az esernyő „fogantyújának” is neveznek).

Tulajdonságai

szerkesztés
 
Whitney-féle esernyő mint egyenes mozgása által létrejövő vonalfelület.
 
Whitney-esernyő egyetlen szálból elkészítve egy műanyag kockában

A Whitney-féle esernyő egy parabolakonoid vonalfelület. Fontos szerepet játszik a szingularitáselméletben, a becsípődésesi szingularitás egyszerű lokális modelljeként. A húrelméletben a Whitney-brane egy D7-brane wrapping, aminek a szingularitásait lokálisan a Whitney-esernyő modellezi. A Whitney-esernyők az F-elmélet Sen-féle gyenge csatolási határainál is előjönnek.

Kapcsolódó szócikkek

szerkesztés