A geometriában az a felület vonalfelület, amelynek minden pontján át húzhatunk egy olyan egyenest, ami az adott felületen halad végig.

Ilyen például a sík, a hengerpalást vagy a kúpfelület.

A vonalfelületet úgy képzelhetjük el, mint egy egyenes térben történő mozgatásának lenyomatát. Pl. kúpfelületet úgy képezhetünk ezzel a módszerrel, hogy egy egyenes egyik pontját rögzítjük, egy másik pontját pedig körbevezetjük egy körön.

Kétszer vonalazott felületSzerkesztés

Kétszer vonalazott a felület, ha minden pontján át két különböző rajta fekvő egyenes húzható.

Ilyen például a sík (ez az egyetlen n-szeresen vonalazott felület, ha n >= 3), a hiperbolikus paraboloid (nyeregfelület) vagy a hiperboloid.

ParaméterezésSzerkesztés

A mozgó egyenes leírható az

 

egyenlettel, ahol   a felület általános pontja,   a görbén végigfutó pont,   az egységgömbön, ami végigköveti a görbét.

Például, ha

 

akkor olyan felületet kapunk, amely tartalmazza a Möbius-szalagot.

A vonalfelület paraméterezhető úgy is, hogy  , ahol   és   a felület két, egymást nem metsző görbéje. Például, ha   és   két kitérő egyenesen fut végig konstans sebességgel, akkor hiperbolikus paraboloidot, vagy egyköpenyű hiperboloidot kapunk.

Síkba teríthető felületSzerkesztés

Egy felület síkba teríthető, ha nyújtás vagy összenyomás nélkül síkba teríthető. Ha egy síkba teríthető felület teljes tér a háromdimenziós térben, akkor vonalfelület, így például a gömb nem teríthető síkba. Fordítva viszont nem áll a dolog. A henger- és kúpfelület például síkba teríthető, de az egyköpenyű hiperboloid már nem. Általánosabban, ha a háromdimenziós térben egy felület síkba teríthető, akkor van olyan vonalfelület, ami tartalmazza. Négy dimenzióban viszont léteznek olyan síkba teríthető felületek, amik nem vonalfelületek.[1]

Algebrai geometriaSzerkesztés

 
Az z=xy egyenletű hiperbolikus paraboloid

Az algebrai geometriában a vonalfelületeket olyan projektív felületekből származtatják, amik minden pontjára illeszkedik egy egyenes, ami teljes egészében a felület része. Ez a feltétel definícióként is szolgál.

Az építészetbenSzerkesztés

A kétszeresen vonalazott felületek lehetőséget adnak arra, hogy egyenes építőelemekből görbült felszínt hozzanak létre. Így épülnek hiperbolikus paraboloid alakú nyeregtetők, egyköpenyű hiperboloid alakú hűtőtornyok és szeméttárolók.

JegyzetekSzerkesztés

  1. Hilbert & Cohn-Vossen 1952, pp. 341-342.

ForrásokSzerkesztés

  • Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004), Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer-Verlag, Berlin, MR2030225, ISBN 978-3-540-00832-3
  • Beauville, Arnaud (1996), Complex algebraic surfaces, London Mathematical Society Student Texts, 34 (2nd ed.), Cambridge University Press, MR1406314, ISBN 978-0-521-49510-3; 978-0-521-49842-5
  • Edge, W. L. (1931), The Theory of Ruled Surfaces, Cambridge, University Press . Review: Bull. Amer. Math. Soc. 37 (1931), 791-793, doi:10.1090/S0002-9904-1931-05248-4
  • Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), New York: Chelsea, ISBN 978-0-8284-1087-8 .
  • Iskovskikh, V.A. (2001), "Ruled surface", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104