Ha egy adott gyűrű feletti végtelen sorozatokon ahhoz hasonlóan értelmezünk két, összeadásnak és szorzásnak nevezett műveletet, ahogyan azt a végeredményben véges sorozatokként definiálható polinomok esetében tennénk, akkor jutunk az általánosabb formális hatványsor fogalmához.

Definíció szerkesztés

A formális hatványsorok éppen úgy végtelen összegek, mint a nem formálisak. A műveleteket is ugyanúgy végezzük rajtuk, mint a valódi hatványsorokon. A konvergenciával azonban nem foglalkozunk.

Összeadás:

 
ahol an és bn gyűrűelem.

Skalárral szorzás:

 
ahol c gyűrűelem.

Szorzás:

 
ahol minden együttható gyűrűelem

Ekvivalens definíció szerkesztés

Legyen   tetszőleges gyűrű, és tekintsük az   feletti   végtelen   sorozatok halmazát (megjegyzés,  -vel a D halmazból a K halmazba képező függvények halmazát jelöljük általában is).

Értelmezünk ezek között, tehát   felett két kétváltozós   és   műveletet a következőképpen:

  •   ; ez tehát egyszerűen két végtelen hosszú vektor koordinátánkénti összegzése (+ az R gyűrűbeli összeadás);
  • A szorzás azonban nem koordinátánkénti szorzás, hanem:  .

Belátható, hogy ezek a műveletek éppen a fenti műveleteknek felelnek meg.

A   algebrai struktúra szintén gyűrű. Ezt nevezzük az   feletti formális hatványsorok gyűrűjének.

Polinomok szerkesztés

A polinomok véges összegként definiálhatók. A hatványsorok közül éppen azok polinomok, amelyekben csak véges sok együttható nem nulla. A legnagyobb indexű nem nulla együttható indexe a polinom foka. A nullpolinom fokát nem definiáljuk.

Ha egy   sorozatnak van olyan indexe (ti. olyan indexű tagja), melytől kezdve nulla (az összes nála nagyobb indexű tagja nulla), akkor az ilyen indexet (gyenge v. tágabb értelemben vett) eltűnési indexnek nevezünk. A sorozat eltűnési indexeinek halmazát  -vel jelöljük (definiálható a szigorú eltűnési index is, ha ≤ helyett <-t írunk a definícióban). Nincs minden sorozatnak eltűnési indexe; azaz e halmaz üres is lehet bizonyos sorozatokra; ha azonban nem üres, akkor a sorozatot polinomnak nevezzük.

Pontosan egyetlen olyan sorozat van, melynek minden indexe eltűnési index, mégpedig az a sorozat, melynek minden tagja 0. E sorozat a nullpolinom.

Tulajdonságok szerkesztés

  • A véges testek fölötti egyhatározatlanú formális hatványsorok gyűrűt alkotnak, aminek részgyűrűje a polinomgyűrű
  • Gyűrű feletti polinomgyűrű, és az ugyanazon gyűrű fölött vett formális hatványsorok gyűrűje egyszerre kommutatív, egységelemes vagy nullosztómentes, ha az alapgyűrű is az
  • Ha s egy egységelemes gyűrű fölötti hatványsor, és  , akkor  , ha i > k, és  , ha  
  • Az egyhatározatlanú formális hatványsorok gyűrűje egyben modulus is az alapgyűrű fölött. Ez a modulus pontosan akkor unitér, ha az alapgyűrű egységelemes. Pontosan akkor vektortér, ha az alapgyűrű ferdetest, és pontosan akkor algebra, ha az alapgyűrű test. Ekkor rangja végtelen. Hasonlóak érvényesek a polinomgyűrűre is
  • Hatványsor akkor és csak akkor egység, ha konstans tagja egység az alapgyűrűben. Speciálisan, ferdetest feletti formális hatványsor pontosan akkor egység, ha konstans tagja nem nulla
  • Hatványsor akkor és csak akkor felbonthatatlan, ha konstans tagja az alapgyűrűben felbonthatatlan
  • Ha az alapgyűrű test, akkor a formális hatványsorok gyűrűje euklideszi
  • Test feletti hatványsorok gyűrűjének elemei   alakúak, ahol u egész. Ez a test az alaptest fölötti Laurent-sorok teste

Források szerkesztés

Gonda, János. Véges testek (PDF) [2011]. Hozzáférés ideje: 2015. október 7.