Generátorrendszer (lineáris algebra)
A lineáris algebrában egy vektortér generátorrendszere egy olyan részhalmaz, aminek elemeinek lineáris kombinációjaként bármely vektor kifejezhető. Duális fogalma a lineárisan független rendszer. A vektortér bázisa egy minimális generátorrendszer (és egyben maximális lineárisan független rendszer).
Definíció szerkesztés
Az a1,…,an ∈ V vektorokat a V vektortér generátorrendszerének nevezzük, ha V minden eleme előáll az ai vektorok lineáris kombinációjaként.
Példák szerkesztés
- minden bázis egyben egy generátorrendszer is,
- maga a V vektortér is generátorrendszer,
Tulajdonságok szerkesztés
Ha a generátorrendszert további V-beli vektorokkal bővítjük, akkor ismét generátorrendszert kapunk (azaz egy vektortér generátorrendszerei felszálló halmazrendszert alkotnak).
- Minden véges generátorrendszer tartalmaz bázist.
Ez úgy igazolható, hogy addig hagyunk el elemeket, ameddig lehet.
Az állítás igaz végtelen generátorrendszerekre is, de ekkor a bizonyításhoz a Zorn-lemmát vagy a kiválasztási axióma valamelyik más ekvivalensét kell felhasználni.
Források szerkesztés
- Pelikán József: Algebra (PDF/Postscript). Összeállította Gröller Ákos. ELTE TTK, 2. fejezet (Vektorterek, lineáris leképezések és mátrixaik)