A matematikában komplex függvénynek nevezünk egy leképezést, ha értelmezési tartománya és értékkészlete egyaránt a komplex számok részhalmaza. Elsősorban a komplex analízis foglalkozik a komplex függvények jellemzésével.

Elemi tulajdonságok

szerkesztés
  • Komplex függvények összege, különbsége, szorzata is komplex függvény az értelmezési tartományok metszetén.
  • Komplex függvények hányadosa is komplex függvény, de természetesen csak ott értelmezett, ahol a nevező nem nulla.
  • Komplex függvények kompozíciója is komplex függvény.

Mivel minden valós szám egyben komplex is, a valós függvények triviális példái a komplex függvényeknek. Feltehetően a legegyszerűbb példák a valósrész- és a képzetesrész-operátorok, melyeket leggyakrabban Re illetve Im névvel illetnek:

 
 

A konjugátképzés is az elemibb komplex függvények közé tartozik:

 

Az elforgatás operátor a komplex számnak megfelelő síkvektort forgatja el az origó körül:

 

Komplex szám abszolútértéke valós szám, de a valós számok halmaza beágyazható a komplex számsíkba, így az abszolútértékképzés is tekinthető komplex függvénynek:

 

A komplex számok halmazán értelmezett aritmetikai műveletek (összeadás, kivonás, osztás és szorzás) segítségével is értelmezhetőek komplex függvények.

Központi szerepet játszanak a polinomfüggvények, melyek általános alakban a következő képlettel adhatóak meg:

 

Polinomfüggvények hányadosait racionális függvényeknek hívjuk. Ezek általános alakja a következő:

 

Kapcsolódó szócikkek

szerkesztés