Paralelogrammaazonosság
Egy (V, ||.|| ) normált vektortérben paralelogrammaazonosságnak nevezzük a következő formulát:
A formális azonosság geometriai elnevezése arra az analógiára utal, hogy a kétdimenziós euklideszi térben bármely paralelogrammában az átlók hosszának négyzetösszege megegyezik a oldalak hosszának négyzetösszegével.
Az azonosságot teljesítő normált terekSzerkesztés
Nem minden normált térben igaz az azonosság. Ellenben minden skalárszorzatos V tér esetén az ||x||:=<x,x> generált normával ellátva V paralelogrammaazonosságos tér. A megfordítás is igaz: Ha ||.|| olyan norma V felett, mellyel teljesül a paralelogrammaazonosság, akkor ||.|| segítségével definiálható V-n skalárszorzat (ez a Neumann-Jordan-tétel).
A paralelogrammaazonosságnak nagy jelentősége van az absztrakt függvényterek tárgyalásánál. Megmutatható például, hogy egy Banach-tér pontosan akkor Hilbert-tér, ha teljesül benne a paralelogrammaazonosság.