Meselson–Stahl-kísérlet

Ez a közzétett változat, ellenőrizve: 2023. március 9.

A Meselson–Stahl-kísérlet genetikai kísérlet a DNS-kettőződés (replikáció) mechanizmusának elvi működésére vonatkozóan, melyet 1958-ban Matthew Meselson és Franklin Stahl folytatott le és publikált.

James D. Watson és Francis Crick ismerve az általuk korábban leírt DNS struktúrát, feltételezte, hogy a replikáció csak szemikonzervatív módon mehet végbe. Vagyis a DNS kettős szál széttekeredik, a szülői DNS-szálak templátként szolgálnak az utódszálak szintéziséhez, majd mindegyik következő generációban a replikálódó DNS-duplex egy szülői és egy újonnan szintetizálódott szálat fog magában foglalni. Egy másik elképzelés szerint – a konzervatív modell alapján – a szülői és az utódszálak is egy-egy külön DNS-duplexet alkotnak.

Amikor a feltevés napvilágot látott, meglehetősen kevés technológiai feltétel állt rendelkezésre, amely támogathatta volna a jelenség kísérletes bizonyítását. 1957-ben Meselson, Stahl és Jerome Vinograd kifejlesztettek egy sűrűség-gradiens elvén alapuló centrifugálási technikát, amely molekulákat jól el tud különíteni igen kis sűrűség-különbség alapján is. Az eszköz az általuk felvetett gondolatmenetet támogatta, annak bizonyítására, hogy a replikáció mely mechanizmussal zajlik le.

Sűrűség-gradiens ultracentrifugálás

szerkesztés

Nagy centrifugális erők hatására a cézium-klorid-molekulák (CsCl) disszociálnak. A nehéz céziumatomok a felszíni rétegek felől a mélyebb helyekre jutnak, a kloridionok ellentétes irányban. Ennek megfelelően egy a felszíni réteg felől egy relatíve meredek gradiens jön létre és az oldatban szuszpendált részecskék, magas (104–105 g) hatására sűrűségüknek megfelelő szinten helyeződnek. Több százezer g gyorsító potenciál esetén már a riboszómák, vagy más nagyméretű fehérjék is kiülepíthetők. Az ülepítésnél természetesen nem csak a részecske tömegét (sűrűségét) veszik figyelembe – amely egyenesen arányos az ülepedés sebességével –, hanem a térfogatát is, ugyanis adott részecske ülepedési sebessége annak négyzetével arányos. Az alábbi táblázat néhány sejt és organellum sűrűségét tartalmazza.

Biológiai anyag Sűrűség (g/cm³)
Prokarióta sejtek 1,05–1,15
Emlőssejtek 1,04–1,10
Organellumok 1,10–1,60
Fehérjék 1,30
Dezoxi-ribonukeinsav (DNS) 1,70
Ribonukleinsav (RNS) 2,00

A kísérlet

szerkesztés
 
Meselson-Stahl kísérlet szemléltető ábrája (leírást lásd a szövegben)

Az elmélet az volt, hogy valamilyen módszerrel jelölni lehessen a DNS-t, a választásuk a DNS-ben előforduló (a pirimidin és purinbázisok vázában) nitrogénre esett, melynek ismert volt egy normál atomtömegű és egy nehéznitrogén izotóp változata is. Ugyanis, ha a kísérlet alanyát képző E. coli baktériumokat normál nitrogént tartalmazó táptalajon nevelünk, annak DNS-e a centrifugacsőben a cső felszíni részében fog elhelyezkedni, azonban ha nehéznitrogént tartalmazón, ebben az esetben valamivel mélyebben.

Meselson és munkatársai E. coli-kultúrát hosszabb ideig nehéznitrogén táptalajon nevelt, ekkor biztos volt, hogy a mikrobák DNS-e nehéznitrogént tartalmazott. Ezek után a kultúrát áttették normál nitrogént tartalmazó táptalajra. Hogy a replikáció módját ellenőrizni tudják, ismerni kellett a szóban forgó baktérium szaporodásfiziológiáját, mindenekelőtt az egymás után történő osztódások periodicitását tekintve. Mintát vettek az első, második, majd harmadik generációból is, centrifugálták, izolálták a DNS-üket, amely azt mutatta, hogy az első generációban a DNS minta a nehéz és a könnyű sávok között ülepedett ki, a második generációban egy könnyű és egy köztes DNS-nek megfelelő sávot kaptak, a harmadikban a könnyű DNS sávja sokkal szélesebbnek bizonyult. Ez kiváló igazolást adott a szemikonzervatív feltételezésre, melyet már az első generáció eredményei is mutattak.

A kísérlet összegzése

szerkesztés

Meselson és Stahl kísérlete tehát nem csupán egy igen fontos biológiai jelenségre adott magyarázatot, hanem ezzel együtt egy azóta is széleskörűen használt technológiai eljárás megalkotását is magával hozta. A megoldás szép példája annak, hogy egy adott felmerülő problémára a lehető legalkalmasabb metódust alkalmazzuk megoldásként.