Lézer

fényforrás

A lézer olyan fényforrás, amely indukált emissziót használ egybefüggő fénysugár létrehozására. A lézerek tekintetében fény alatt bármilyen frekvenciájú elektromágneses sugárzást érthetünk, nem kizárólag csak látható fényt. Ennek megfelelően beszélhetünk például infravörös sugárzást és ibolyántúli sugárzást kibocsátó lézerekről is.

Különböző hullámhosszú látható fényt kibocsátó lézerek:
piros: 635 nm, 660 nm
zöld: 520 nm, 532 nm
kék: 405 nm, 445 nm

Legegyszerűbben kifejezve a lézer egy összetartott (koncentrált) fénysugár.

A lézer működési elve a fény gerjesztésén alapul. Az aktív környezetből energiát pumpálnak a rezonátorba, amiben gerjesztik a rezonátorban jelenlevő elektronokat. Az alapállapotba visszaeső elektronok fotonokat bocsátanak ki amelyek a rezonátorban további elektronokat gerjesztenek, stimulálnak. A nagy energiájú fotonok a rezonátor egy féláteresztő tükrén át lépnek ki. A kilépő fénynyaláb koncentrált és egységes hullámhosszú (ld. a kül. hullámhosszú lézerek képet).

Nevének eredeteSzerkesztés

A neve (laser) az angol Light Amplification by Stimulated Emission of Radiation kifejezés rövidítése. Magyarországon a kiejtést követő lézer alakban használatos.

KifejlesztéseSzerkesztés

Az első lézert az amerikai Theodore Harold Maiman fejlesztette ki 1960-ban. 1964-ben Alexander Mihajlovics Prohorov szovjet akadémikus, Charles Hard Townes amerikai és Nyikolaj Gennagyijevics Baszov szovjet fizikus a lézer és mézer megalkotásához vezető kvantum-elektrodinamikai kutatásért megosztva Nobel-díjat kaptak.

 
HeNe-lézer bemutatója a Kastler-Brossel Laboratóriumban

A lézerfény tulajdonságaiSzerkesztés

  • A létrejött fény időben és térben koherens, a lézer által kibocsátott hullámok fázisa a sugár minden keresztmetszeténél azonos.
  • A lézernyaláb keskeny és nagyon kis széttartású nyaláb. A lézerfény nagyrészt párhuzamos fénysugarakból áll, nagyon kis szóródási szöggel. Ezzel nagy energiasűrűség érhető el szűk sugárban, nagy távolságokban is.
  • A lézerek energiája kis térrészben koncentrálódik, a lézerfény teljesítménysűrűsége a megszokott fényforrásokénak sokszorosa lehet.
  • A lézer által kibocsátott hullámok mágneses mezejének iránya állandó.
  • A lézerek fénye egyszínű. A lézersugár egy olyan elektromágneses hullám, amely közel egyetlen hullámhosszú összetevőből áll.

Lézeres kommunikáció: hálózati adatátvitelSzerkesztés

Szín Hullámhossztartomány Frekvenciatartomány
vörös ~ 625–740 nm ~ 480–405 THz
narancssárga ~ 590–625 nm ~ 510–480 THz
sárga ~ 565–590 nm ~ 530–510 THz
zöld ~ 500–565 nm ~ 600–530 THz
cián ~ 485–500 nm ~ 620–600 THz
kék ~ 440–485 nm ~ 680–620 THz
ultraibolya ~ 380–440 nm ~ 790–680 THz


A lézeres átvitelt alkalmazó adóvevő párokat pont-pont közötti adatátvitelre használhatjuk. E kommunikáció napjainkban teljesen digitális, a lézerfény irányított energiakoncentrációja nagyobb távolság (akár 5 km) áthidalását teszi lehetővé. Az illetéktelen lehallgatás, illetve külső zavarás ellen viszonylag védett. Az időjárási viszonyok azonban befolyásolják fény terjedését, így az eső, a köd, a légköri szennyeződések zavarként jelentkeznek, amik a kommunikációt akár teljesen blokkolhatják.

A lézerfényt azonban nemcsak a szabad térben, hanem ún. optikai szálban is lehet vezetni, így lézeres adatátvitel felhasználható lokális hálózatok, telefonközpontok összekötésére, valamint internetszolgáltatók adatátviteli gerincének kiépítéséhez és videorendszereket összefogó kommunikációs hálózat központi gerincének telepítéséhez. A megvalósított adatátviteli sebesség jelenleg 1 és 10 Gbps között a leggyakoribb. A technológia folyamatos fejlődést mutat, így a maximálisan elérhető adatátviteli sebesség az előbbieket valószínűleg már meghaladja. Magyarország rendkívül fejlett hagyományokkal rendelkezik lézerfejlesztés terén, a magyar lézeres szakembereket világszerte elismerik.

A lézeres kommunikáció történeteSzerkesztés

A szabadtéri optikai átvitel műszaki kiforrottságát gyakran lebecsülik amiatt a téves felfogás miatt, hogy milyen régóta állnak fejlesztés alatt ezek a rendszerek. A szabadtéri optikai átvitelt vagy optikai vezeték nélküli kommunikációs rendszert először Alexander Graham Bell mutatta be a 19. század végén (előbb mutatta be, mint a telefont). Bell szabadtéri optikai kísérletei arra irányultak, hogy az emberi hangot telefonjelekké alakította, és a vevők között a szabad téren át egy fénysugár mentén továbbította mintegy 180 méter távolságra. Bell a kísérleti eszközt "fotofonnak" nevezte, és ezt az optikai technológiát – és nem a telefont – tartotta elsődleges találmányának, mivel így az átvitelhez nem volt szükség vezetékekre.

Habár Bell fotofonja soha nem vált a mindennapi élet valóságává, demonstrálta az optikai kommunikáció alapelvét. A mai szabadtéri optikai átviteli vagy szabadtéri optikai kommunikációs rendszerek műszaki megoldásait lényegében az elmúlt 40 év során alakították ki, főként védelmi alkalmazásokra. Azáltal, hogy a szabadtéri optikai átvitel fő műszaki kihívásait megoldották, a légvédelmi illetve védelmi tevékenység olyan erős alapot jelent, amelyre a mai üzleti lézeres rendszereket alapozni lehet.

S most nézzük meg hol tart a lézer történeti fejlődésében.

The New York Times egyik cikkében arról tudósított, hogy a világon az elmúlt két évben több mint 200 millió km hosszúságú száloptikai kábelt fektettek le, mivel a szolgáltatók reagáltak az internet-jelenségre és a végfelhasználók kielégíthetetlen sávszélesség-éhségére.

Az optikai kábelek lefektetésébe beruházott hatalmas összegek ellenére ennek legnagyobb része kihasználatlan, az irodai, kereskedelmi és ipari épületek 80-90%-a egyszerűen képtelen kielégítő sebességgel és biztonságban kapcsolódni a száloptikai gerinchálózathoz, mivel jellemzően az alternatív kapcsolatként felmerülő Wifi megoldások sorra kudarcot vallanak. Jelenleg a lézer optikai átviteli rendszerek jelentik az egyik legígéretesebb megoldást a feljövőben lévő széles sávú kapcsolatok igényeinek kielégítésére, és a kereskedelmi és ipari épületek gerinchálózatra való illesztésén kialakult szűk keresztmetszetre. A lézer-optika átviteli rendszerek számos kedvező jellemzővel bírnak, a legfontosabb ezek közül az alacsony beruházási és működési költség, a gyors telepítés, az optikai technológiának köszönhetően a száloptikai kábelekre jellemző több gigabites sávszélesség, a zavarokkal szembeni érzéketlenség és a lehallgatás elleni védelem.

A lézer egyéb felhasználási területeiSzerkesztés

  • szemműtét[1] és szemvizsgálat.[2]
  • navigáció: autonóm járművek[3] és felderítőrobotok[4] lézernyaláb segítségével képezik le 3 dimenzióban a terepet.
  • polimerek fóliák, szövetek hegesztése: a lézerrel megolvasztják a műanyagot az érintkezési felületen, mely megszilárdulva mechanikailag ellenálló kötést hoz létre.[5]
  • fogfúrás: ennek elterjedésére még várni kell, de a technológia létezik. Másodpercenként 500 ezer lézerimpulzussal távolítják el a szuvas fogterületet vagy az öreg fogtömést.[6]
  • rakétaelhárítás: széles spektrumú lézernyalábbal tartják távol a hőkövető rakétákat.[7]
  • fémfelületek polírozása.[8]
  • villámvédelem: lézersugárral idéznek elő elektromos kisüléseket a felhőkben.[9]
  • biológiai vizsgálatok során használt fénymikroszkópok gyakran használnak különböző lézereket a minta megvilágítására, vagy a fluoreszkáló anyag gerjesztésére

A lézer mint fegyverSzerkesztés

JegyzetekSzerkesztés

  1. Lézeres szemműtét. focusmed.hu
  2. Nem kell ide orvos! Lemérem én, milyen szemüveg kell. mernokbazis.hu. [2010. július 3-i dátummal az eredetiből archiválva]. (Hozzáférés: 2010. július 28.)
  3. Így működik a Google autonóm járműve. mernokbazis.hu. [2011. november 3-i dátummal az eredetiből archiválva]. (Hozzáférés: 2011. november 1.)
  4. Felderítő robot. mernokbazis.hu. [2010. június 19-i dátummal az eredetiből archiválva]. (Hozzáférés: 2009. november 30.)
  5. Varrás lézerrel. mernokbazis.hu. [2011. október 22-i dátummal az eredetiből archiválva]. (Hozzáférés: 2011. október 18.)
  6. Nem kínoz többé a fogorvos?. mernokbazis.hu. [2012. április 18-i dátummal az eredetiből archiválva]. (Hozzáférés: 2011. január 25.)
  7. Hőkövető rakéta védelemmel ellátott helikopterek. mernokbazis.hu. [2010. szeptember 19-i dátummal az eredetiből archiválva]. (Hozzáférés: 2010. szeptember 6.)
  8. Polírozás lézerrel. mernokbazis.hu. [2016. március 4-i dátummal az eredetiből archiválva]. (Hozzáférés: 2009. november 16.)
  9. Lézersugarak villámhárító szerepében. mernokbazis.hu. [2011. május 9-i dátummal az eredetiből archiválva]. (Hozzáférés: 2010. július 28.)

ForrásokSzerkesztés

További információkSzerkesztés