Euler-féle szám

matematikai állandó, a természetes logaritmus alapja
Ez a közzétett változat, ellenőrizve: 2024. augusztus 13.

Az Euler-féle szám (jele: e) egy matematikai állandó, amit a természetes logaritmus alapjaként használnak. Irracionális és transzcendens.

A π és a képzetes egység i mellett az e az egyik legfontosabb állandó a matematikában.

Az e szám Euler-féle számként is ismert Leonhard Euler matematikus után, de Napier-állandónak is nevezik John Napier skót matematikusnak, a logaritmusfüggvény megalkotójának tiszteletére.

Értéke 500 értékes jegyre megadva:

e = 2,7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931

Definíció

szerkesztés

Az e néhány ekvivalens definíciója:

  • Az e a következő sorozat határértéke:
 
 
ahol n! a faktoriálisa az n természetes számnak.
  • Az e az a pozitív valós szám, amelyre
 

Tulajdonságok

szerkesztés

Az ex exponenciális függvény az egyetlen függvény (konstanssal való szorzás erejéig), amely önmaga deriváltja, és így önmaga primitív függvénye:

  és
 , ahol C konstans.

Az e irracionális (bizonyítás) és transzcendens szám (bizonyítás). Az első szám volt, amiről bebizonyították, hogy transzcendens (kivéve azokat a számokat, amiket szándékosan transzcendensre konstruáltak). A bizonyítást Charles Hermite 1873-ban végezte el. Sejtések szerint normális szám, azaz számjegyei véletlenszerűen fordulnak elő. Szerepel az Euler-képletben, amely az egyik legfontosabb matematikai azonosság:

 ,

Az   speciális esetet Euler-azonosságnak nevezik:

 

amit Richard Feynman Euler drágakövé-nek nevez.

Az e lánctört alakba fejtve egy érdekes mintát tartalmaz (A005131 sorozat az OEIS-ben), ami így írható le:

e = [1; 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, …]

Az e hatványait kifejezhetjük a következőképpen:

 

Minden valós x számra teljesül az

 

egyenlőtlenség. (Egyenlőség egyetlen esetben, az   helyen áll fenn.)

Ezt  -re alkalmazva:

 

amit  -vel megszorozva ezt kapjuk:

 

Ha x pozitív valós szám, mindkét oldalból x-edik gyököt vonva kapjuk, hogy  , más szóval pozitív x-re az   függvény  -ben éri el maximumát ( ).

A logaritmusokra vonatkozó azonosságok alapján:

 

ahol   egytől különböző pozitív szám.

Története

szerkesztés

John Napier logaritmusról írt művében jelentek meg az első utalások az e számra 1618-ban. A függelék nem adott közelítést magára a számra, de tartalmazott egy táblázatot a természetes logaritmusról. Ezt a táblázatot feltehetően William Oughtred készítette. Az e számot elsőként Jacob Bernoulli használta, amikor ennek a kifejezésnek az értékét kereste:

 

A szám első ismert alkalmazása Gottfried Wilhelm Leibniz és Christiaan Huygens levelezésében jelent meg 1690-ben és 1691-ben, ahol is b-vel jelölték. Elsőként Leonhard Euler használta az e betűt 1727-ben, és az 1736-ban megjelent Mechanicá-ban. Egyes kutatók az ezt követő években a c betűt használták, de végül az e terjedt el.

Az e betű választásának okai ismeretlenek, de egyes elméletek szerint az exponenciális szó első betűjéből ered. Egy másik elgondolás szerint ez az első magánhangzó az a után, amivel Euler egy másik számot jelölt. Ez az elgondolás nem magyarázza meg, hogy Euler miért használta ezeket a magánhangzókat. Nem valószínű, hogy a saját nevének kezdőbetűjét használta volna, hiszen nagyon szerény volt, és mindig megadta mások munkáinak a kellő tiszteletet.[1]

Matematikán kívüli használata

szerkesztés

Az e az egyik leghíresebb matematikai konstans, ezért a matematikán kívül is népszerű. Néhány példa:

  • 2004-ben az IPO (a Google leányvállalata) 2 718 281 828 dolláros növekedést akart.
  • Donald Knuth a METAFONT verziószámait úgy állapította meg, hogy azok az e számot közelítsék. Így a verziószámok 2, 2.7, 2.71, 2.718, …
  • Szintén a Google tehet egy rejtélyes hirdetőtábláról, [1] amely először a Szilícium-völgyben, majd a Massachusetts állambeli Cambridge-ben jelent meg, amely így szólt {az első tízjegyű prímszám, amely az e egymást követő számjegyeiben található}.com. Aki megoldotta a feladatot és meglátogatta a megjelölt weblapot, egy sokkal nehezebb megfejtendő feladatot talált. (Az első tízjegyű prímszám, amely az e számjegyeiben előfordul, a 7427466391, amely meglepő módon csak a 101. számjegynél kezdődik.) [2] Archiválva 2007. május 29-i dátummal a Wayback Machine-ben
  • A neper (Np) mértékegység, ami két szám arányát adja meg, e-alapú logaritmust használ (ellentétben a decibel 10-es alapjával). Felhasználása: nyomás, térerősség, jelszint stb.[2]

  ;  

Hivatkozások

szerkesztés
  1. Eli Maor: E: The Story of a Number. Princeton University Press. 1994. ISBN 978-0-691-14134-3. p. 156.
  2. Archivált másolat. [2015. június 10-i dátummal az eredetiből archiválva]. (Hozzáférés: 2010. szeptember 12.)
  • Maor, Eli; e: The Story of a Number, ISBN 0-691-05854-7
  • O'Connor, J.J., and Roberson, E.F.; The MacTutor History of Mathematics archive: "Az e szám"; University of St Andrews Scotland (2001)
  • O'Connor: "The number e"

További információk

szerkesztés