Extragalaktikus csillagászat

Az extragalaktikus csillagászat a csillagászat tudományának azon ága, mely az univerzum Tejútrendszeren kívüli objektumaival foglalkozik. Manapság, a megfigyelési technika rohamos fejlődése révén az extragalaktikus csillagászat hivatott a világegyetem nagy léptékű szerkezetének felderítésére. Eredményei között szerepel nem csak a közeli galaxisok feltérképezése, hanem a galaxishalmazok és galaktikus szuperhalmazok térbeli elhelyezkedésének vizsgálata is. Az extragalaktikus csillagászat vizsgálódásának területe a Tejútrendszer peremétől a vörös határig terjed, mely az a legtávolabbi hely és legrégebbi állapot, ahonnan (illetve amilyen régről) bármilyen információ képes eljutni hozzánk.

Fantáziakép a Tejútrendszerről

Bár óriási távolságokról van szó, mégis nemcsak a hivatásos csillagászok foglalkozhatnak az extragalaktikus objektumokkal. Az amatőrcsillagászok távcsöveivel is számos – általuk – úgynevezett mélyégobjektumot figyelhetnek meg. Ezek közé sorolják a galaxisokat is. A felfedezés öröméből az elhivatott amatőrcsillagászok is kivehetik részüket, ha először pillantanak meg egy extragalaktikus szupernóvát. Szupernóvát galaxisban már magyar amatőrcsillagász is fedezett fel saját, mélyég objektumok megfigyelésére is alkalmas távcsövével.[1]

Az extragalaktikus objektumok megfigyelésének rövid történeteSzerkesztés

Az éjszakai égbolton a csillagokon kívül néhány halvány, elmosódott, nem csillagszerű jelenség is megfigyelhető, melyek azonban a csillagokhoz hasonlóan nem változtatják az égbolton elfoglalt helyüket. A város fényeitől távoli helyen szabad szemmel is megfigyelhető például az Androméda-köd (az Andromeda csillagképben), vagy az M33 galaxis (a Triangulum csillagképben). A déli félteke embere felfigyelhet a Kis és Nagy Magellán Ködre. Mindezeknek a ködszerű képződményeknek számbavétele a csillagászat viszonylag késői szakaszában kezdődött.

 
Az Andromeda csillagképet ábrázoló csillagtérkép

Bár az Androméda-ködről már a X. században élt Al-Szufi arab csillagász is írt, a legtöbb ilyen objektum felfedezéséhez várni kellett a távcső feltalálásáig, sőt száz évvel azután sem ismertek több ilyen objektumot, mint a középkor tudósai. Aki először listát készített az égi ködökről, az Charles Messier francia csillagász volt az 1770-es években. Katalógusában, a róla elnevezett Messier-katalógusban 103 objektumot sorolt fel (innen ered például az Androméda-köd M31 illetve a Triangulum-köd M33 kódszáma). Természetesen ezekről abban a korban egyáltalán nem lehetett tudni, hogy milyen távolságban vannak. Még a 19. század végén sem volt könnyű megkülönböztetni a Tejútrendszer csillaghalmazait és ködeit a feltehetően extragalaktikus képződményektől. A szisztematikus kutatást a Messier Katalógus hatására az Uránusz bolygó felfedezője, William Herschel kezdte el, majd ezt folytatta fia, John Herschel. 1864-ben tették közzé „A General Catalogue of Nebulae and Clusters of Stars” (Ködök és csillaghalmazok általános katalógusa) című munkájukat, a GC katalógust, mely már 5079 ilyen képződményt tartalmazott. Az 1888-tól 1908-ig terjedő időszakban Dreyer dán csillagász és munkatársai hozták létre a New General Catalogue (NGC-katalógus) gyűjteményt és ennek kiegészítéseit, az Index Katalógusokat (IC I. és IC II.). Mindeddig a kutatók nagyrészt távcsöves észlelésre támaszkodtak. A fototechnika elterjedése során vették észre, hogy a galaxisok száma jóval nagyobb annál, mint amennyit érdemes lenne katalógusba foglalni. Az 1930-as évekre már 12 000-re becsülték a számukat. Az 1960-as években már 800 000 extragalaxist tüntettek fel a fotókatalógusokban.

A tudomány számára az 1910-es, 1920-as években vált nyilvánvalóvá, hogy a mélyégobjektumok katalógusaiban szereplő ködök 90%-a nem galaktikus képződmény. A geometriai és fotometriai távolságmérési módszerek alkalmazása során kiderült, hogy a Tejútrendszer legtávolabbi csillagainál is messzebb elhelyezkedő objektumokról van szó. Ezt erősítette, hogy a fotólemezeken már a csillagködök belső szerkezetét is ki lehetett venni. Ekkor hozták létre az első morfológiai osztályozásokat. Máig elterjedt Edwin Hubble galaxisosztályozási módszere (Hubble-típusok). Itt kell megjegyezni, hogy a galaxisok spektroszkópiai vizsgálata fontos kozmológiai felfedezéseket eredményezett. Hubble és munkatársai 1931-ben arra a megállapításra jutottak, hogy a galaxisok távolsága egyenesen arányos a távolodási sebességükkel, sőt az univerzum minden extragalaktikus objektuma távolodik tőlünk, azaz a világegyetem tágul (Hubble-törvény).

ExtragalaxisokSzerkesztés

A következő táblázat a legközelebbi extragalaxisok adatait mutatja.

Csk: csillagkép; lII, bII galaktikus hosszúság és galaktikus szélesség fokokban (galaktikus koordináta-rendszer), R. A. és dec rektaszcenzió és deklináció (ekvatoriális koordináta-rendszer), r: távolság kiloparszekben, D: átmérő kiloparszekben, m: abszolút fényesség magnitúdóban, M: tömeg 109 naptömegben

Galaxis neve Katalógusszám Csk Típusa lII bII R. A. dec Távolság Átmérő mpg M Méret
Tejútrendszer Sb 10 30 −20,5m 100
SMC NGC 292 Tuc Ir I 303 −45 0h 52,7m −72o 50m 50 6,3 −17,8m 14 5o x 3o
LMC Men dSB 05h 23m −69o 45m 1,7*105 −17,4m 10,75o x 9,17o
Androméda NGC 224, M 31 And Sb 121 −21 00h 42m +41o 16' 690 33 −16,2m 2 180' x 63'
NGC 221, M 32 And E 2 121 −22 00h 42m +40o 51' 690 0,7 −18,5m 14 7,6' × 5,8'
NGC 205 And E 5 121 −21 00h 40m +41o 41' 690 2,4 −15,9m 8 22' x 11'
NGC 598, M 33 Tri Sc 135 −21 01h 33,9m +30o 39' 720 14 −18,5m 14 73' x 45'
NGC 6822, IC 4895 Sgr Ir I 26 −32 19h 44m −14o 48' 480 2,3 −14,9m 0,4 15,5' x 13,5'
NGC 147, DDO 3 Cas dE5 120 −14 00h 33m +38o 30' 690 1,4 −14,2m 1 13,2' x 8,1'
NGC 185 Cas dE3 121 −14 00h 38m +48o 20' 690 1 −14,5m 1 11' x 9,8'
IC 1613, DDO 8 Cet Ir I 129 −60 01h 5,1m +02o 08' 720 3 −14,3m 0,1 20' x 18,5'
Sculptor Scl E 284 −84 00h 55,4m −34o 14' 50 0,7 −9,8m
Fornax PCG 10093, A0237 For dE2 237 −65 02h 39,9m −34o 32' 110 1,6 −11,3m
Lupus Lup E5 74 −73 500 1,5 −12,7m
Leo I DDO 74, A1006 Leo dE3 227 +49 10h 8,5m +12o 18' 260 0,6 −11,1m 9,8' x 7,4'
Leo II UGC 6253, DDO 93 Leo dE0 227 +68 11h 13,5m +22o 10' 180 0,3 −8,7m
IC 10 Cas Sc 119 −3 +00h 20,4m +59o 18' 5' x 4'
IC 342 Cam SBcd 139 +10 03h 46,8m +68o 06' 17,8'
NGC 6946, UGC 11597 Cep SBc 97 +11 20h 34m +60o 0,9' 800 2 −17m 11' x 9,8'
Leo III, Leo A Leo Ir 187 +54
Sextans A Sex Ir 246 +40 6300fé
Sextans C Sex E 4000fé
Ursa Maior UMa E
Pegasus Peg E
Draco Dra dE 17h 19,4m +57o 58' 70 0,3
Ursa Minor UMi dE 15h 08,2m +67o 18' 50 0,3
NGC 300 Sce SAcd 299 −80 00h 54m −37o 41' −8m

Az extragalaktikus csillagászat távolságmeghatározási módszereiSzerkesztés

Az extragalaxisok távolságának meghatározására használt legfontosabb módszerek. (Mvis: a módszerben használt égitest abszolút vizuális fényessége, rmax: a módszerrel mérhető maximális távolság)

Módszer Abszolút Mvis rmax
RR Lyrae csillagok
+ 0,m6
650 ezer
Gömbhalmazok legfényesebb csillagai
-2,m8 -- -1m9
3,3 millió
Klasszikus cefeidák
-7m – -2m
13 millió
Nóvák
-9m – -6m
65 millió
Legfényesebb (nem változó-) csillagok
- 9m
65 millió
Gömbhalmazok
-10m – -5m
70 millió
H II területek átmérője
-
80 millió
Szupernóvák
-20m – -15m
több százmillió
Legfényesebb galaxisok egy galaxishalmazban
-22m – -20m
több milliárd

Primer módszerekSzerkesztés

Olyan távolságmérési eljárások, amelyeket a Tejútrendszeren belül is alkalmaznak. Ezen eljárások közös alapelve olyan objektumok látszó fényességének vagy szögátmérőjének a meghatározása, amelyek abszolút fényessége vagy valódi nagysága ismert. Természetesen itt feltételezzük, hogy a világegyetem vizsgálandó területén az említett égitestek mindenhol ugyanolyan tulajdonságokkal rendelkeznek.

RR Lyrae csillagok
Legfényesebb szuperóriások
Gömbhalmazok
H II területek
Nóvák
Szupernóvák
Cefeida-parallaxis (a Cefeida változócsillagok periódus-fényesség relációja alapján). A cefeidák fényességváltozását elsőként Henrietta Swan Leavitt figyelte meg 1912-ben. Az 1910-es években Harlow Shapley szisztematikus módszerrel meghatározta a periódus-fényesség reláció nullpontját, és ezzel egy új távolságmeghatározási módszerhez, a cefeida-parallaxishoz jutott. Ezzel a módszerrel nem csak a Tejútrendszeren belüli objektumok, hanem az extragalaxisok távolsága is meghatározható lett.

A fényességváltozás periódusából kiszámítható a csillag abszolút fényessége. A reláció függ a populációtól R. P. Kraft eredménye szerint:

Mpg = – 1,m80 – 1,m74 * logP

és

Mpg = – 0,m35 – 1,m75 * logP

az első ill. a második populációs cefeidák esetén. Mpg a fotografikus magnitúdót, P pedig a fényességváltozás mért periódusát jelöli. Az utóbbi összefüggés azonban csak a második populációs, -2m – nál fényesebb cefeidákra érvényes.

Szekunder módszerekSzerkesztés

Háromszögelés (geometriai módszer). Ezt a módszert alkalmazta Arisztarkhosz a Nap és a Hold távolságának becsléséhez.
Trigonometrikus-parallaxis (1818, Bessel). Ez a módszer csak a kb. 300 fényéven belüli csillagok távolságának meghatározására alkalmas.
Statisztikus-parallaxis
Doppler-effektus (az égitestek színképének vöröseltolódásásból). Shapley mutatott rá először, hogy a spirálködök (spirálgalaxisok) színképvonalai a laboratóriumi értékhez képest a hosszabb hullámhosszak, azaz a vörös felé eltolódtak. Ezt az ún. vöröseltolódás jelenséget 1919-ben C. Doppler a galaxisok távolodása miatt fellépő effektusként értelmezte; felállította a Hubble-törvényt: a galaxisok a távolságukkal egyenes arányban távolodnak tőlünk.

Galaxispárok és galaxiscsoportokSzerkesztés

Csillagászati megfigyeléseink bizonyítják, hogy galaxisok között szorosabb fizikai kapcsolat is kialakulhat egy adott galaxishalmazon belül. Erre elsősorban a galaxisok színképéből következtetnek (multiobjektum-spektrográfia). A megfigyeléseknél komoly problémát jelent a valódi és vetületi párok megkülönböztetése.

A Galaxiscsoportot alkot a Tejútrendszer a Kis Magellán-felhővel (SMC) és a Nagy Magellán-felhővel (LMC). Tipikus csoport még az M31 (Androméda-köd), M32 és az M110 Messier-objektumok. Az alábbi táblázat az utóbbi csoport fizikai tulajdonságait adja meg:

M 31 M 32 M 110
Mphg
A
B
C
Szögnagyság
4,6
9,4
9,7
Galaxis típusa
Sb
E2
SG0

m: magnitúdó, m(phg): fotografikus magnitúdó. A szögnagyság ívpercben van kifejezve, a galaxis típusa a Hubble-féle osztályozás alapján van megadva.

A galaxiscsoportok kutatása a csillagászat egy kevésbé fejlett területe, amely még számtalan megválaszolatlan kérdést tartogat a csillagászok számára:

  • A fizikai párok tagjainak abszolút fényessége, színe, alakja, mérete eltér-e a különálló galaxisokétól?
  • Van-e kapcsolat az egybetartozó galaxisok abszolút fényessége, színe, alakja, mérete között?
  • Rendszerezettek-e a párok (például impulzusnyomatékuk szempontjából)? Egyenletesen helyezkednek-e el?
  • Van-e összefüggés a rendszer tömege és a galaxisok morfológiai típusai között?

GalaxishalmazokSzerkesztés

A galaxisok halmazokba tömörülnek, amelyek akár több, mint ezer galaxist is tartalmazhatnak. Emiatt egyes galaxishalmazok össztömege elérheti a 10·1015 naptömeget, átmérőjük pedig a 3·107 fényévet. A csillagászati megfigyelések arra utalnak, hogy a galaxisok túlnyomó része halmazokban található. A legismertebb halmazok:

A halmaz, B halmaz, Bootes, Centaur, Coma, Corona Borealis, Hercules, Hydra, Leo, Perseus, Pisces, Ursa Maior I, Ursa Maior II, Virgo

A Virgo-halmaz környékén feltűnően sok galaxis található. Ebből arra következtethetünk, hogy a galaxisok szuperhalmazokat alkotnak. Tejútrendszerünk e szuperhalmaz szélén, a Virgo-halmaz pedig a közepe táján helyezkedik el. A Virgo szuperhalmaz – aminek átmérője meghaladja az 1,5·1010 fényévet – galaxisai 50-200 milliárd év alatt kerülik meg egyszer a középpontját. A szuperhalmazokon túlmenően úgy tűnik, hogy a galaxisok egy buborékszerű képződményben helyezkednek el, térbeli eloszlásuk tehát nem egyenletes.

A magyar csillagászképzésben szereplő extragalaktikus témájú észlelési programokSzerkesztés

JegyzetekSzerkesztés

  1. „Meteor”, Budapest XXIX. (6.), 3-5.. o, Kiadó: MCSE. ISSN 0133-249X.  

ForrásokSzerkesztés

  • Csillagászat. Szerk. Marik Miklós. Budapest: Akadémiai. 1989.  

Külső hivatkozásokSzerkesztés

Kapcsolódó szócikkekSzerkesztés